The singularity probability of a random symmetric matrix is exponentially small

IF 3.5 1区 数学 Q1 MATHEMATICS
Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe
{"title":"The singularity probability of a random symmetric matrix is exponentially small","authors":"Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe","doi":"10.1090/jams/1042","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be drawn uniformly at random from the set of all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n times n\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> symmetric matrices with entries in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet negative 1 comma 1 EndSet\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\{-1,1\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that <disp-formula content-type=\"math/mathml\"> \\[ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P left-parenthesis det left-parenthesis upper A right-parenthesis equals 0 right-parenthesis less-than-or-slanted-equals e Superscript minus c n Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo movablelimits=\"true\" form=\"prefix\">det</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}( \\det (A) = 0 ) \\leqslant e^{-cn},</mml:annotation> </mml:semantics> </mml:math> \\] </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">c&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an absolute constant, thereby resolving a long-standing conjecture.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1042","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A A be drawn uniformly at random from the set of all n × n n\times n symmetric matrices with entries in { 1 , 1 } \{-1,1\} . We show that \[ P ( det ( A ) = 0 ) e c n , \mathbb {P}( \det (A) = 0 ) \leqslant e^{-cn}, \] where c > 0 c>0 is an absolute constant, thereby resolving a long-standing conjecture.

随机对称矩阵的奇异概率是指数级小的
让 A A 从所有 n × n times n 对称矩阵的集合中均匀随机抽取,这些矩阵的条目在 { - 1 , 1 } 中。 \{-1,1\} .我们证明 \[ P ( det ( A ) = 0 )⩽ e - c n , \mathbb {P}( \det (A) = 0 )\leqslant e^{-cn}, \] 其中 c > 0 c>0 是一个绝对常量,从而解决了一个长期存在的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信