Gap for geometric canonical height functions

IF 1 3区 数学 Q1 MATHEMATICS
Yugang Zhang
{"title":"Gap for geometric canonical height functions","authors":"Yugang Zhang","doi":"10.1007/s00209-024-03502-y","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of a gap around zero for canonical height functions associated with endomorphisms of projective spaces defined over complex function fields. We also prove that if the rational points of height zero are Zariski dense, then the endomorphism is birationally isotrivial. As a corollary, by a result of S. Cantat and J. Xie, we have a geometric Northcott property on projective plane in the same spirit of results of R. Benedetto, M. Baker and L. Demarco on the projective line.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"130 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03502-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of a gap around zero for canonical height functions associated with endomorphisms of projective spaces defined over complex function fields. We also prove that if the rational points of height zero are Zariski dense, then the endomorphism is birationally isotrivial. As a corollary, by a result of S. Cantat and J. Xie, we have a geometric Northcott property on projective plane in the same spirit of results of R. Benedetto, M. Baker and L. Demarco on the projective line.

Abstract Image

几何标准高度函数的差距
我们证明了与定义在复变函数域上的投影空间内定形相关的典范高度函数存在零附近的缺口。我们还证明,如果高度为零的有理点是扎里斯基密集的,那么内态性就是双等价的。作为推论,通过 S. Cantat 和 J. Xie 的一个结果,我们在投影平面上得到了几何诺斯考特属性,其精神与 R. Benedetto、M. Baker 和 L. Demarco 在投影线上的结果相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信