Mateus Kroth, João P. Trabucho-Alexandre, Mariana Pinheiro Pimenta, Geert-Jan Vis, Eva De Boever
{"title":"Facies characterisation and stratigraphy of the upper Maastrichtian to lower Danian Maastricht Formation, South Limburg, the Netherlands","authors":"Mateus Kroth, João P. Trabucho-Alexandre, Mariana Pinheiro Pimenta, Geert-Jan Vis, Eva De Boever","doi":"10.1017/njg.2024.9","DOIUrl":null,"url":null,"abstract":"The Maastricht Formation is a mostly calcarenitic unit that belongs to the Chalk Group but is unlike the typical North Sea chalk in that it is much coarser and at times contains a significant terrigenous component. The formation was deposited between the late Maastrichtian and the early Danian in a proximal zone of the Chalk Sea immediately north of the Anglo-Brabant and Rhenish massifs. The formation crops out in South Limburg, the Netherlands, in the German state of North Rhine–Westphalia, near Aix-la-Chapelle (Aachen), and in the Belgian provinces of Liège and Limburg, and it is present in the subsurface in the Campine Basin and in the Roer Valley Graben, in Belgium and the Netherlands. The often spectacular fossil content of the Maastricht Formation has been extensively studied but its sedimentological aspects remain understudied. Indeed, the lithostratigraphy of the formation is largely informal and based on the abundance and morphology of flint and on the quantification of fossil content. The paucity of facies studies and the lack of a lithostratigraphic framework based on modern facies studies hampers stratigraphic correlation between outcrops and, more importantly, boreholes. A facies characterisation and facies-based lithostratigraphic framework of the Maastricht Formation in South Limburg is particularly urgent because groundwater is abstracted from aquifers in the formation and geological models currently in place fail to predict facies heterogeneity and, consequently, aquifer properties. We studied eight outcrops of the Maastricht Formation across South Limburg and carried out a (micro)facies analysis of the outcrops. We show that the Maastricht Formation can be subdivided into three lithofacies and five microfacies. The lithofacies reflect the traditional subdivision of the formation into Maastricht and Kunrade limestones. Our results suggest that the current subdivision of the Maastricht Formation into six members is untenable. The formation is best subdivided into lower and upper members. The Kunrade limestone should be afforded the status of formation. We interpret the Maastricht Formation as having been deposited in an epeiric ramp, in which facies distribution was controlled by water temperature, nutrient levels and storminess. The (micro)facies of the Maastricht Formation can be organised into two depositional stages: stage 1, representing the lower part of the formation, is characterised by heterozoan carbonates deposited under cooler, mesotrophic conditions in a nutrient-rich, more proximal region of the epeiric sea; stage 2 is characterised by heterozoan-photozoan carbonates deposited in a warmer and stormier environment with slightly lower nutrient levels.","PeriodicalId":501577,"journal":{"name":"Netherlands Journal of Geosciences","volume":"204 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/njg.2024.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Maastricht Formation is a mostly calcarenitic unit that belongs to the Chalk Group but is unlike the typical North Sea chalk in that it is much coarser and at times contains a significant terrigenous component. The formation was deposited between the late Maastrichtian and the early Danian in a proximal zone of the Chalk Sea immediately north of the Anglo-Brabant and Rhenish massifs. The formation crops out in South Limburg, the Netherlands, in the German state of North Rhine–Westphalia, near Aix-la-Chapelle (Aachen), and in the Belgian provinces of Liège and Limburg, and it is present in the subsurface in the Campine Basin and in the Roer Valley Graben, in Belgium and the Netherlands. The often spectacular fossil content of the Maastricht Formation has been extensively studied but its sedimentological aspects remain understudied. Indeed, the lithostratigraphy of the formation is largely informal and based on the abundance and morphology of flint and on the quantification of fossil content. The paucity of facies studies and the lack of a lithostratigraphic framework based on modern facies studies hampers stratigraphic correlation between outcrops and, more importantly, boreholes. A facies characterisation and facies-based lithostratigraphic framework of the Maastricht Formation in South Limburg is particularly urgent because groundwater is abstracted from aquifers in the formation and geological models currently in place fail to predict facies heterogeneity and, consequently, aquifer properties. We studied eight outcrops of the Maastricht Formation across South Limburg and carried out a (micro)facies analysis of the outcrops. We show that the Maastricht Formation can be subdivided into three lithofacies and five microfacies. The lithofacies reflect the traditional subdivision of the formation into Maastricht and Kunrade limestones. Our results suggest that the current subdivision of the Maastricht Formation into six members is untenable. The formation is best subdivided into lower and upper members. The Kunrade limestone should be afforded the status of formation. We interpret the Maastricht Formation as having been deposited in an epeiric ramp, in which facies distribution was controlled by water temperature, nutrient levels and storminess. The (micro)facies of the Maastricht Formation can be organised into two depositional stages: stage 1, representing the lower part of the formation, is characterised by heterozoan carbonates deposited under cooler, mesotrophic conditions in a nutrient-rich, more proximal region of the epeiric sea; stage 2 is characterised by heterozoan-photozoan carbonates deposited in a warmer and stormier environment with slightly lower nutrient levels.