Multiscale SUR Estimation of Systematic Risk

Antonis A. Michis
{"title":"Multiscale SUR Estimation of Systematic Risk","authors":"Antonis A. Michis","doi":"10.1515/snde-2023-0017","DOIUrl":null,"url":null,"abstract":"We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk.
系统风险的多尺度 SUR 估算
我们基于基于小波变换的时间序列观测结果,提出了一种多尺度版本的看似无关回归模型。每个回归方程指的是不同的时间尺度,这样就能在可行的 GLS 估计过程中使用跨尺度误差协方差,从而提高效率。我们通过两项研究证明了所提出的方法相对于 OLS 的优势:一项是使用美国主要工业部门股票市场收益率进行的实证研究,另一项是使用替代小波滤波器进行的详细蒙特卡罗模拟研究。我们还解释了所提出的方法是否适用于估算长期系统性风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信