Logical characterizations of algebraic circuit classes over integral domains

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube
{"title":"Logical characterizations of algebraic circuit classes over integral domains","authors":"Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube","doi":"10.1017/s0960129524000136","DOIUrl":null,"url":null,"abstract":"We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline1.png\"/> <jats:tex-math> $\\mathrm{AC}_{\\mathbb{R}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline2.png\"/> <jats:tex-math> $\\mathrm{NC}_{\\mathbb{R}}^{}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> classes for this setting. We give a theorem in the style of Immerman’s theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline3.png\"/> <jats:tex-math> $\\mathrm{AC}_{R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline4.png\"/> <jats:tex-math> $\\mathrm{NC}_R^{}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hierarchy. Those generalizations apply to the Boolean <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline5.png\"/> <jats:tex-math> $\\mathrm{AC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline6.png\"/> <jats:tex-math> $\\mathrm{NC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000136","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the $\mathrm{AC}_{\mathbb{R}}$ and $\mathrm{NC}_{\mathbb{R}}^{}$ classes for this setting. We give a theorem in the style of Immerman’s theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the $\mathrm{AC}_{R}$ and $\mathrm{NC}_R^{}$ hierarchy. Those generalizations apply to the Boolean $\mathrm{AC}$ and $\mathrm{NC}$ hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.
积分域上代数电路类的逻辑特征
我们介绍了卡克和米尔引入的对任意无限积分域的实数代数回路的改编构造,并针对这种情形推广了 $\mathrm{AC}_{\mathbb{R}}$ 和 $\mathrm{NC}_{\mathbb{R}}^{}$ 类。我们给出了一个类似于伊默曼定理的定理,它表明对于这些经过调整的形式主义,由恒定深度和多项式大小的电路决定的集合与由一阶逻辑的适当调整定义的集合是相同的。此外,我们还讨论了杜兰、哈克和沃尔默对有保护谓词逻辑的广义化,并展示了 $\mathrm{AC}_{R}$ 和 $\mathrm{NC}_R^{}$ 层次的特征。这些概括也适用于布尔 $\mathrm{AC}$ 和 $\mathrm{NC}$ 层次。此外,我们还引入了一种形式主义,以便能够比较上述一些具有不同底层积分域的复杂性等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信