Numerical and Preliminary In Situ Investigation on Roadway Excavation Using Static Expansion Mechanical Fracturing

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yin Chen, Zijun Li, Jian Zhao, Dan Huang
{"title":"Numerical and Preliminary In Situ Investigation on Roadway Excavation Using Static Expansion Mechanical Fracturing","authors":"Yin Chen, Zijun Li, Jian Zhao, Dan Huang","doi":"10.1155/2024/2156337","DOIUrl":null,"url":null,"abstract":"This paper introduced a new nonexplosive roadway excavation method, combining the reserved free space technology and the static expansion mechanical fracturing technology, where the former is implemented by the gasbag, while the piston splitter is for the latter. The numerical model of roadway excavation was set up via PFC3D to investigate the mechanical fracturing performance, including the single-hole fracturing and the hole network fracturing. The results show that the reasonable hole margin is about 1.0–1.5 m, and the optimal column spacing of the hole network pattern is 1.0 m, after comprehensively analyzing the fracturing performance and the splitting force evolution. Moreover, the mechanical fracturing excavation method was applied to construct a parking chamber in the Kalatongke Mine, to preliminarily verify the feasibility of the static expansion mechanical fracturing technology. The in situ investigation results indicate that the excavation footage is about 0.8 m with the piston splitter when adopting a hole margin of 1.0–1.5 m. To sum up, the preliminary field application and the numerical simulation result both support the feasibility of mechanical fracturing, and the reasonable fracturing hole margin is about 1.0 m.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2156337","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduced a new nonexplosive roadway excavation method, combining the reserved free space technology and the static expansion mechanical fracturing technology, where the former is implemented by the gasbag, while the piston splitter is for the latter. The numerical model of roadway excavation was set up via PFC3D to investigate the mechanical fracturing performance, including the single-hole fracturing and the hole network fracturing. The results show that the reasonable hole margin is about 1.0–1.5 m, and the optimal column spacing of the hole network pattern is 1.0 m, after comprehensively analyzing the fracturing performance and the splitting force evolution. Moreover, the mechanical fracturing excavation method was applied to construct a parking chamber in the Kalatongke Mine, to preliminarily verify the feasibility of the static expansion mechanical fracturing technology. The in situ investigation results indicate that the excavation footage is about 0.8 m with the piston splitter when adopting a hole margin of 1.0–1.5 m. To sum up, the preliminary field application and the numerical simulation result both support the feasibility of mechanical fracturing, and the reasonable fracturing hole margin is about 1.0 m.
使用静态膨胀机械压裂法进行路基开挖的数值和初步现场调查
本文介绍了一种新的非爆破巷道掘进方法,该方法结合了预留自由空间技术和静态膨胀机械压裂技术,前者由气囊实现,后者由活塞劈裂器实现。通过 PFC3D 建立巷道掘进数值模型,研究机械压裂性能,包括单孔压裂和孔网压裂。结果表明,综合分析压裂性能和劈裂力演化,合理孔隙约为 1.0-1.5 m,孔网模式最佳柱距为 1.0 m。此外,还应用机械压裂掘进方法在卡拉通克矿区建设了一个停车硐室,初步验证了静态扩张机械压裂技术的可行性。现场勘查结果表明,当采用活塞式劈裂器开挖孔口余量为 1.0-1.5 米时,开挖进尺约为 0.8 米;当采用活塞式劈裂器开挖孔口余量为 1.0-1.5 米时,开挖进尺约为 0.5 米。综上所述,初步的现场应用和数值模拟结果均支持机械压裂的可行性,合理的压裂孔隙约为 1.0 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信