Influence of Biomass-Modified Asphalt Binder on Rutting Resistance

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Mahyar Arabani, Mohadeseh Ebrahimi, Mohammad Mahdi Shalchian, Maryam Majd Rahimabadi
{"title":"Influence of Biomass-Modified Asphalt Binder on Rutting Resistance","authors":"Mahyar Arabani, Mohadeseh Ebrahimi, Mohammad Mahdi Shalchian, Maryam Majd Rahimabadi","doi":"10.1155/2024/8249248","DOIUrl":null,"url":null,"abstract":"Biomasses are environmentally friendly additives that lower pollution in pavement engineering because of their biodegradability. On the other hand, to build a safe, long-lasting pavement, rutting prevention is crucial. This study provides a comprehensive review of the efficacy of biomass as recyclable materials in reducing rutting and enhancing characteristics of asphalt mixtures. According to findings, the hydrocarbon polymer properties of lignin and biomass ash improve asphalt binder consistency, hardness, and function at high temperatures. The results showed that biochar, due to its solid shape, enhances the stiffness and viscosity of the mixtures. The high-temperature performance of asphalt binder is improved by bioshell waste, which increases rutting parameters. Thus, biomass like ash, lignin, and biochar can increase asphalt binder rheology and rutting resistance due to chemical forces such as Van der Waals and hydrogen ions. The macroscopic and microscopic investigation also shows higher interaction and better adhesion in bioasphalt. However, asphalt binders containing bio-oil exhibited no unique behaviors due to their lubricant impact. Based on the estimation of the life cycle assessment (LCA), it was determined that biomass utilization has the potential to decrease the cost and CO<sub>2</sub> emissions of pavement engineering by as much as 10% and more than three times, respectively. An examination of recyclability revealed that biomass utilization can decrease the requirement for additional stabilizers by as much as 20%.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"184 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8249248","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomasses are environmentally friendly additives that lower pollution in pavement engineering because of their biodegradability. On the other hand, to build a safe, long-lasting pavement, rutting prevention is crucial. This study provides a comprehensive review of the efficacy of biomass as recyclable materials in reducing rutting and enhancing characteristics of asphalt mixtures. According to findings, the hydrocarbon polymer properties of lignin and biomass ash improve asphalt binder consistency, hardness, and function at high temperatures. The results showed that biochar, due to its solid shape, enhances the stiffness and viscosity of the mixtures. The high-temperature performance of asphalt binder is improved by bioshell waste, which increases rutting parameters. Thus, biomass like ash, lignin, and biochar can increase asphalt binder rheology and rutting resistance due to chemical forces such as Van der Waals and hydrogen ions. The macroscopic and microscopic investigation also shows higher interaction and better adhesion in bioasphalt. However, asphalt binders containing bio-oil exhibited no unique behaviors due to their lubricant impact. Based on the estimation of the life cycle assessment (LCA), it was determined that biomass utilization has the potential to decrease the cost and CO2 emissions of pavement engineering by as much as 10% and more than three times, respectively. An examination of recyclability revealed that biomass utilization can decrease the requirement for additional stabilizers by as much as 20%.
生物质改性沥青粘结剂对抗车辙性能的影响
生物质是一种环保型添加剂,由于其生物降解性,可降低路面工程中的污染。另一方面,要建造安全、持久的路面,防止车辙至关重要。本研究全面回顾了生物质作为可回收材料在减少车辙和提高沥青混合料特性方面的功效。研究结果表明,木质素和生物质灰烬的碳氢聚合物特性可改善沥青粘结剂的稠度、硬度和高温功能。结果表明,生物炭因其固体形状,可提高混合料的硬度和粘度。生物壳废料改善了沥青胶结料的高温性能,提高了车辙参数。因此,灰分、木质素和生物炭等生物质可通过范德华力和氢离子等化学力提高沥青胶结料的流变性和抗车辙性能。宏观和微观研究也表明,生物沥青具有更高的相互作用和更好的粘附性。然而,含有生物油的沥青粘合剂并没有因其润滑作用而表现出独特的行为。根据生命周期评估(LCA)的估算,生物质的利用有可能使路面工程的成本和二氧化碳排放量分别降低 10%和三倍以上。对可回收性的研究表明,生物质的利用可使对额外稳定剂的需求减少多达 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信