Theoretical Solutions for Forecasting the Response of the Existing Pipeline Induce by Tunneling underneath

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Yao Rong, Guohui Feng, Yang Sun, Yujie Li, Guanyu Chen, Haibin Ding, Changjie Xu
{"title":"Theoretical Solutions for Forecasting the Response of the Existing Pipeline Induce by Tunneling underneath","authors":"Yao Rong, Guohui Feng, Yang Sun, Yujie Li, Guanyu Chen, Haibin Ding, Changjie Xu","doi":"10.1155/2024/6914049","DOIUrl":null,"url":null,"abstract":"In order to accurately and efficiently assess the impact of tunnel excavation on overlying existing pipeline, an analytical method is proposed to solve this problem. First, the vertical free displacement of the surrounding soil due to tunnel excavation can be derived by the Loganathan formula. Next, the overlying existing pipeline can be treated as a Timoshenko beam resting on the Vlasov foundation model, and the influence of the surrounding soil on the both sides of the existing pipeline is taken into consideration. Finally, an analytical solution for the longitudinal deformation of the existing pipeline can be obtained by using the integral method. Case analysis results demonstrate that the calculated results of this method closely in line with measured data. Compared to the degenerate analytical solution given by this method, the result from this method is more consistent with the measured data. Further parameter studies show that the volume loss rate, diameter of new tunnel, skew angle, and vertical distance between tunnel and pipeline are significant factors affecting the existing pipeline response due to tunneling underlying.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"130 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6914049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to accurately and efficiently assess the impact of tunnel excavation on overlying existing pipeline, an analytical method is proposed to solve this problem. First, the vertical free displacement of the surrounding soil due to tunnel excavation can be derived by the Loganathan formula. Next, the overlying existing pipeline can be treated as a Timoshenko beam resting on the Vlasov foundation model, and the influence of the surrounding soil on the both sides of the existing pipeline is taken into consideration. Finally, an analytical solution for the longitudinal deformation of the existing pipeline can be obtained by using the integral method. Case analysis results demonstrate that the calculated results of this method closely in line with measured data. Compared to the degenerate analytical solution given by this method, the result from this method is more consistent with the measured data. Further parameter studies show that the volume loss rate, diameter of new tunnel, skew angle, and vertical distance between tunnel and pipeline are significant factors affecting the existing pipeline response due to tunneling underlying.
预测隧道工程对现有管道影响的理论解决方案
为了准确有效地评估隧道开挖对上覆现有管道的影响,本文提出了一种分析方法来解决这一问题。首先,可通过 Loganathan 公式推导出隧道开挖对周围土壤造成的垂直自由位移。其次,可将上覆的现有管道视为支承在 Vlasov 地基模型上的 Timoshenko 梁,并考虑周围土壤对现有管道两侧的影响。最后,利用积分法可以得到现有管道纵向变形的解析解。实例分析结果表明,该方法的计算结果与实测数据十分吻合。与该方法给出的退化解析解相比,该方法的结果与测量数据更加一致。进一步的参数研究表明,体积损失率、新隧道直径、倾斜角以及隧道与管道之间的垂直距离是影响隧道底层现有管道响应的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信