A Conditioned Local Limit Theorem for Nonnegative Random Matrices

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Marc Peigné, Da Cam Pham
{"title":"A Conditioned Local Limit Theorem for Nonnegative Random Matrices","authors":"Marc Peigné, Da Cam Pham","doi":"10.1007/s10959-024-01336-2","DOIUrl":null,"url":null,"abstract":"<p>For any fixed real <span>\\(a &gt; 0\\)</span> and <span>\\(x \\in {\\mathbb {R}}^d, d \\ge 1\\)</span>, we consider the real-valued random process <span>\\((S_n)_{n \\ge 0}\\)</span> defined by <span>\\( S_0= a, S_n= a+\\ln \\vert g_n\\cdots g_1x\\vert , n \\ge 1\\)</span>, where the <span>\\(g_k, k \\ge 1, \\)</span> are i.i.d. nonnegative random matrices. By using the strategy initiated by Denisov and Wachtel to control fluctuations in cones of <i>d</i>-dimensional random walks, we obtain an asymptotic estimate and bounds on the probability that the process <span>\\((S_n)_{n \\ge 0}\\)</span> remains nonnegative up to time <i>n</i> and simultaneously belongs to some compact set <span>\\([b, b+\\ell ]\\subset {\\mathbb {R}}^+_*\\)</span> at time <i>n</i>.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"61 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01336-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

For any fixed real \(a > 0\) and \(x \in {\mathbb {R}}^d, d \ge 1\), we consider the real-valued random process \((S_n)_{n \ge 0}\) defined by \( S_0= a, S_n= a+\ln \vert g_n\cdots g_1x\vert , n \ge 1\), where the \(g_k, k \ge 1, \) are i.i.d. nonnegative random matrices. By using the strategy initiated by Denisov and Wachtel to control fluctuations in cones of d-dimensional random walks, we obtain an asymptotic estimate and bounds on the probability that the process \((S_n)_{n \ge 0}\) remains nonnegative up to time n and simultaneously belongs to some compact set \([b, b+\ell ]\subset {\mathbb {R}}^+_*\) at time n.

非负随机矩阵的条件局部极限定理
对于任何固定的实值(a >;0) and\(x \in {\mathbb {R}}^d, d \ge 1\), we consider the real-valued random process \((S_n)_{n \ge 0}\) defined by \( S_0= a, S_n= a+\ln \vert g_n\cdots g_1x\vert , n \ge 1\), where the \(g_k, k \ge 1, \) are i. d non-negative random matrics.i.d. 非负随机矩阵。通过使用杰尼索夫(Denisov)和瓦赫特尔(Wachtel)提出的控制d维随机游走的锥体波动的策略,我们得到了一个渐近估计和过程\((S_n)_{n \ge 0}\)在时间n之前保持非负并且在时间n时同时属于某个紧凑集\([b, b+\ell ]子集{\mathbb {R}}^+_\) 的概率边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信