Multiresolution kernel matrix algebra

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
H. Harbrecht, M. Multerer, O. Schenk, Ch. Schwab
{"title":"Multiresolution kernel matrix algebra","authors":"H. Harbrecht, M. Multerer, O. Schenk, Ch. Schwab","doi":"10.1007/s00211-024-01409-8","DOIUrl":null,"url":null,"abstract":"<p>We propose a sparse algebra for samplet compressed kernel matrices to enable efficient scattered data analysis. We show that the compression of kernel matrices by means of samplets produces optimally sparse matrices in a certain <i>S</i>-format. The compression can be performed in cost and memory that scale essentially linearly with the number of data points for kernels of finite differentiability. The same holds true for the addition and multiplication of <i>S</i>-formatted matrices. We prove that the inverse of a kernel matrix, given that it exists, is compressible in the <i>S</i>-format as well. The use of selected inversion allows to directly compute the entries in the corresponding sparsity pattern. Moreover, <i>S</i>-formatted matrix operations enable the efficient, approximate computation of more complicated matrix functions such as <span>\\({\\varvec{A}}^\\alpha \\)</span> or <span>\\(\\exp ({\\varvec{A}})\\)</span> of a matrix <span>\\({\\varvec{A}}\\)</span>. The matrix algebra is justified mathematically by pseudo differential calculus. As an application, we consider Gaussian process learning algorithms for implicit surfaces. Numerical results are presented to illustrate and quantify our findings.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"2672 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01409-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a sparse algebra for samplet compressed kernel matrices to enable efficient scattered data analysis. We show that the compression of kernel matrices by means of samplets produces optimally sparse matrices in a certain S-format. The compression can be performed in cost and memory that scale essentially linearly with the number of data points for kernels of finite differentiability. The same holds true for the addition and multiplication of S-formatted matrices. We prove that the inverse of a kernel matrix, given that it exists, is compressible in the S-format as well. The use of selected inversion allows to directly compute the entries in the corresponding sparsity pattern. Moreover, S-formatted matrix operations enable the efficient, approximate computation of more complicated matrix functions such as \({\varvec{A}}^\alpha \) or \(\exp ({\varvec{A}})\) of a matrix \({\varvec{A}}\). The matrix algebra is justified mathematically by pseudo differential calculus. As an application, we consider Gaussian process learning algorithms for implicit surfaces. Numerical results are presented to illustrate and quantify our findings.

Abstract Image

多分辨率核矩阵代数
我们提出了一种用于 samplet 压缩核矩阵的稀疏代数,以实现高效的散点数据分析。我们证明,通过 samplet 压缩核矩阵可以产生特定 S 格式的最佳稀疏矩阵。对于有限可微分的核,压缩的成本和内存与数据点的数量基本成线性关系。S 格式矩阵的加法和乘法也是如此。我们证明,如果存在核矩阵的逆,那么它在 S 格式中也是可压缩的。使用选择反转可以直接计算相应稀疏性模式中的条目。此外,S 格式的矩阵运算可以高效、近似地计算更复杂的矩阵函数,例如矩阵 \({\varvec{A}}^\alpha \) 或 \(\exp ({\varvec{A}})\) 的矩阵 \({\varvec{A}}\)。矩阵代数在数学上是通过伪微分计算来证明的。作为应用,我们考虑了隐式曲面的高斯过程学习算法。我们给出了数值结果,以说明和量化我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信