{"title":"A new div-div-conforming symmetric tensor finite element space with applications to the biharmonic equation","authors":"Long Chen, Xuehai Huang","doi":"10.1090/mcom/3957","DOIUrl":null,"url":null,"abstract":"<p>A new <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-parenthesis d i v d i v right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>div</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H(\\operatorname {div}\\operatorname {div})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 0\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> discontinuous Galerkin methods for the biharmonic equation are derived.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
A new H(divdiv)H(\operatorname {div}\operatorname {div})-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and C0C^0 discontinuous Galerkin methods for the biharmonic equation are derived.
本文提出了一种新的 H ( div div ) H(\operatorname {div}\operatorname {div}) 顺应有限元,通过将自由度重新分配到边和面,避免了对超平滑性的需求。这就为双谐波方程带来了一种具有超收敛性的可混合混合方法。此外,还建立了新的有限元 divdiv 复数。最后,推导出了双谐波方程的新弱 Galerkin 方法和 C 0 C^0 非连续 Galerkin 方法。