{"title":"Analysis of the boundary conditions for the ultraweak-local discontinuous Galerkin method of time-dependent linear fourth-order problems","authors":"Fengyu Fu, Chi-Wang Shu, Qi Tao, Boying Wu","doi":"10.1090/mcom/3955","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the ultraweak-local discontinuous Galerkin (UWLDG) method for time-dependent linear fourth-order problems with four types of boundary conditions. In one dimension and two dimensions, stability and optimal error estimates of order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k plus 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are derived for the UWLDG scheme with polynomials of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k\\ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for solving initial-boundary value problems. The main difficulties are the design of suitable penalty terms at the boundary for numerical fluxes and the construction of projections. More precisely, in two dimensions with the Dirichlet boundary condition, an elaborate projection of the exact boundary condition is proposed as the boundary flux, which, in combination with some proper penalty terms, leads to the stability and optimal error estimates. For other three types of boundary conditions, optimal error estimates can also be proved for fluxes without any penalty terms when special projections are designed to match different boundary conditions. Numerical experiments are presented to confirm the sharpness of theoretical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the ultraweak-local discontinuous Galerkin (UWLDG) method for time-dependent linear fourth-order problems with four types of boundary conditions. In one dimension and two dimensions, stability and optimal error estimates of order k+1k+1 are derived for the UWLDG scheme with polynomials of degree at most kk (k≥1k\ge 1) for solving initial-boundary value problems. The main difficulties are the design of suitable penalty terms at the boundary for numerical fluxes and the construction of projections. More precisely, in two dimensions with the Dirichlet boundary condition, an elaborate projection of the exact boundary condition is proposed as the boundary flux, which, in combination with some proper penalty terms, leads to the stability and optimal error estimates. For other three types of boundary conditions, optimal error estimates can also be proved for fluxes without any penalty terms when special projections are designed to match different boundary conditions. Numerical experiments are presented to confirm the sharpness of theoretical results.
本文研究了具有四种边界条件的时变线性四阶问题的超弱局部非连续伽勒金(UWLDG)方法。在一维和二维中,推导了阶数为 k + 1 k+1 的 UWLDG 方案的稳定性和最优误差估计值,该方案的多项式度最多为 k k ( k ≥ 1 k\ge 1 ) ,用于求解初界值问题。主要困难在于为数值通量设计合适的边界惩罚项和构建投影。更确切地说,在二维的 Dirichlet 边界条件下,提出了精确边界条件的精细投影作为边界通量,结合一些适当的惩罚项,可获得稳定性和最佳误差估计。对于其他三种边界条件,如果设计了与不同边界条件相匹配的特殊投影,则不需要任何惩罚项的通量也能证明最佳误差估计。为了证实理论结果的精确性,我们给出了数值实验结果。