{"title":"Convergence, finiteness and periodicity of several new algorithms of 𝑝-adic continued fractions","authors":"Zhaonan Wang, Yingpu Deng","doi":"10.1090/mcom/3948","DOIUrl":null,"url":null,"abstract":"<p>Classical continued fractions can be introduced in the field of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic numbers, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic continued fractions offer novel perspectives on number representation and approximation. While numerous <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic continued fraction expansion algorithms have been proposed by the researchers, the establishment of several excellent properties, such as the Lagrange’s Theorem for classic continued fractions, which indicates that every quadratic irrationals can be expanded periodically, remains elusive. In this paper, we introduce several new algorithms designed for expanding algebraic numbers in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a given prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We give an upper bound of the number of partial quotients for the expansion of rational numbers, and prove that for small primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, our algorithm generates periodic continued fraction expansions for all quadratic irrationals. Experimental data demonstrates that our algorithms exhibit better performance in the periodicity of expansions for quadratic irrationals compared to the existing algorithms. Furthermore, for bigger primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we propose a potential approach to establish a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic continued fraction expansion algorithm. As before, the algorithm is designed to expand algebraic numbers in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, while generating periodic expansions for all quadratic irrationals in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"64 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3948","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Classical continued fractions can be introduced in the field of pp-adic numbers, where pp-adic continued fractions offer novel perspectives on number representation and approximation. While numerous pp-adic continued fraction expansion algorithms have been proposed by the researchers, the establishment of several excellent properties, such as the Lagrange’s Theorem for classic continued fractions, which indicates that every quadratic irrationals can be expanded periodically, remains elusive. In this paper, we introduce several new algorithms designed for expanding algebraic numbers in Qp\mathbb {Q}_p for a given prime pp. We give an upper bound of the number of partial quotients for the expansion of rational numbers, and prove that for small primes pp, our algorithm generates periodic continued fraction expansions for all quadratic irrationals. Experimental data demonstrates that our algorithms exhibit better performance in the periodicity of expansions for quadratic irrationals compared to the existing algorithms. Furthermore, for bigger primes pp, we propose a potential approach to establish a pp-adic continued fraction expansion algorithm. As before, the algorithm is designed to expand algebraic numbers in Qp\mathbb {Q}_p, while generating periodic expansions for all quadratic irrationals in Qp\mathbb {Q}_p.
经典的续分数可以引入 p p -adic 数领域,其中 p p -adic 续分数为数的表示和逼近提供了新的视角。虽然研究人员已经提出了许多 p p -adic 续分数展开算法,但一些优秀性质的建立,如经典续分数的拉格朗日定理(该定理表明每个二次无理数都可以周期性展开),仍是一个未知数。在本文中,我们介绍了几种新算法,旨在为给定素数 p p 在 Q p \mathbb {Q}_p 中展开代数数。我们给出了有理数展开的部分商数上限,并证明了对于小素数 p p ,我们的算法能生成所有二次无理数的周期性续分展开。实验数据表明,与现有算法相比,我们的算法在二次无理数的周期性展开方面表现出更好的性能。此外,对于更大的素数 p p,我们提出了一种建立 p p -adic 连续分数展开算法的潜在方法。与之前的算法一样,该算法旨在扩展 Q p \mathbb {Q}_p 中的代数数,同时为 Q p \mathbb {Q}_p 中的所有二次无理数生成周期性扩展。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.