Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu
{"title":"Few hamiltonian cycles in graphs with one or two vertex degrees","authors":"Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu","doi":"10.1090/mcom/3943","DOIUrl":null,"url":null,"abstract":"<p>Inspired by Sheehan’s conjecture that no <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\"> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=\"application/x-tex\">4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. <bold>27</bold> (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of StartSet 5 comma 6 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>6</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k \\in \\{5, 6\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exist infinitely many <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa element-of StartSet 2 comma 3 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>κ<!-- κ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\kappa \\in \\{ 2, 3 \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any positive integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there are infinitely many non-regular graphs of connectivity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa\"> <mml:semantics> <mml:mi>κ<!-- κ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\kappa</mml:annotation> </mml:semantics> </mml:math> </inline-formula> containing exactly one hamiltonian cycle and in which every vertex has degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 k\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"26 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3943","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by Sheehan’s conjecture that no 44-regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. 27 (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for k∈{5,6}k \in \{5, 6\} there exist infinitely many kk-regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every κ∈{2,3}\kappa \in \{ 2, 3 \} and any positive integer kk, there are infinitely many non-regular graphs of connectivity κ\kappa containing exactly one hamiltonian cycle and in which every vertex has degree 33 or 2k2k.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.