Construction of diagonal quintic threefolds with infinitely many rational points

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Maciej Ulas
{"title":"Construction of diagonal quintic threefolds with infinitely many rational points","authors":"Maciej Ulas","doi":"10.1090/mcom/3953","DOIUrl":null,"url":null,"abstract":"<p>In this note we present a construction of an infinite family of diagonal quintic threefolds defined over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> each containing infinitely many rational points. As an application, we prove that there are infinitely many quadruples <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B equals left-parenthesis upper B 0 comma upper B 1 comma upper B 2 comma upper B 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B=(B_{0}, B_{1}, B_{2}, B_{3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of co-prime integers such that for a suitable chosen integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (depending on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 0 upper X 0 Superscript 5 Baseline plus upper B 1 upper X 1 Superscript 5 Baseline plus upper B 2 upper X 2 Superscript 5 Baseline plus upper B 3 upper X 3 Superscript 5 Baseline equals b\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>5</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_{0}X_{0}^5+B_{1}X_{1}^5+B_{2}X_{2}^5+B_{3}X_{3}^{5}=b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has infinitely many positive integer solutions.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"147 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3953","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we present a construction of an infinite family of diagonal quintic threefolds defined over Q \mathbb {Q} each containing infinitely many rational points. As an application, we prove that there are infinitely many quadruples B = ( B 0 , B 1 , B 2 , B 3 ) B=(B_{0}, B_{1}, B_{2}, B_{3}) of co-prime integers such that for a suitable chosen integer b b (depending on B B ), the equation B 0 X 0 5 + B 1 X 1 5 + B 2 X 2 5 + B 3 X 3 5 = b B_{0}X_{0}^5+B_{1}X_{1}^5+B_{2}X_{2}^5+B_{3}X_{3}^{5}=b has infinitely many positive integer solutions.

构建具有无穷多个有理点的对角五元三次方
在本注释中,我们提出了一个定义在 Q \mathbb {Q} 上的对角五元三次方的无穷族的构造,每个对角五元三次方都包含无穷多个有理点。作为应用,我们证明存在无穷多个四元数 B = ( B 0 , B 1 , B 2 , B 3 ) B=(B_{0}, B_{1}, B_{2}, B_{3}),对于一个合适的选定整数 b b (取决于 B B )、方程 B 0 X 0 5 + B 1 X 1 5 + B 2 X 2 5 + B 3 X 3 5 = b B_{0}X_{0}^5+B_{1}X_{1}^5+B_{2}X_{2}^5+B_{3}X_{3}^{5}=b 有无穷多个正整数解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信