Stochastic nested primal-dual method for nonconvex constrained composition optimization

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Lingzi Jin, Xiao Wang
{"title":"Stochastic nested primal-dual method for nonconvex constrained composition optimization","authors":"Lingzi Jin, Xiao Wang","doi":"10.1090/mcom/3965","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the nonconvex constrained composition optimization, in which the objective contains a composition of two expected-value functions whose accurate information is normally expensive to calculate. We propose a STochastic nEsted Primal-dual (STEP) method for such problems. In each iteration, with an auxiliary variable introduced to track the inner layer function values we compute stochastic gradients of the nested function using a subsampling strategy. To alleviate difficulties caused by possibly nonconvex constraints, we construct a stochastic approximation to the linearized augmented Lagrangian function to update the primal variable, which further motivates to update the dual variable in a weighted-average way. Moreover, to better understand the asymptotic dynamics of the update schemes we consider a deterministic continuous-time system from the perspective of ordinary differential equation (ODE). We analyze the Karush-Kuhn-Tucker measure at the output by the STEP method with constant parameters and establish its iteration and sample complexities to find an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\epsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stationary point, ensuring that expected stationarity, feasibility as well as complementary slackness are below accuracy <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\epsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To leverage the benefit of the (near) initial feasibility in the STEP method, we propose a two-stage framework incorporating a feasibility-seeking phase, aiming to locate a nearly feasible initial point. Moreover, to enhance the adaptivity of the STEP algorithm, we propose an adaptive variant by adaptively adjusting its parameters, along with a complexity analysis. Numerical results on a risk-averse portfolio optimization problem and an orthogonal nonnegative matrix decomposition reveal the effectiveness of the proposed algorithms.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3965","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the nonconvex constrained composition optimization, in which the objective contains a composition of two expected-value functions whose accurate information is normally expensive to calculate. We propose a STochastic nEsted Primal-dual (STEP) method for such problems. In each iteration, with an auxiliary variable introduced to track the inner layer function values we compute stochastic gradients of the nested function using a subsampling strategy. To alleviate difficulties caused by possibly nonconvex constraints, we construct a stochastic approximation to the linearized augmented Lagrangian function to update the primal variable, which further motivates to update the dual variable in a weighted-average way. Moreover, to better understand the asymptotic dynamics of the update schemes we consider a deterministic continuous-time system from the perspective of ordinary differential equation (ODE). We analyze the Karush-Kuhn-Tucker measure at the output by the STEP method with constant parameters and establish its iteration and sample complexities to find an ϵ \epsilon -stationary point, ensuring that expected stationarity, feasibility as well as complementary slackness are below accuracy ϵ \epsilon . To leverage the benefit of the (near) initial feasibility in the STEP method, we propose a two-stage framework incorporating a feasibility-seeking phase, aiming to locate a nearly feasible initial point. Moreover, to enhance the adaptivity of the STEP algorithm, we propose an adaptive variant by adaptively adjusting its parameters, along with a complexity analysis. Numerical results on a risk-averse portfolio optimization problem and an orthogonal nonnegative matrix decomposition reveal the effectiveness of the proposed algorithms.

非凸约束组合优化的随机嵌套原始二元法
在本文中,我们研究了非凸约束组合优化,其中目标包含两个期望值函数的组合,而这两个期望值函数的精确信息通常计算起来很昂贵。我们针对此类问题提出了一种 STochastic nEsted Primal-dual (STEP) 方法。在每次迭代中,通过引入一个辅助变量来跟踪内层函数值,我们利用子采样策略计算嵌套函数的随机梯度。为了减轻可能的非凸约束带来的困难,我们构建了线性化增量拉格朗日函数的随机近似值来更新主变量,这进一步促使我们以加权平均的方式更新对偶变量。此外,为了更好地理解更新方案的渐近动态,我们从常微分方程(ODE)的角度考虑了一个确定性连续时间系统。我们通过参数恒定的 STEP 方法分析输出端的 Karush-Kuhn-Tucker 度量,并建立其迭代和样本复杂性,以找到一个 ϵ \epsilon -stationary 点,确保预期静止性、可行性以及互补松弛性低于精度 ϵ \epsilon 。为了充分利用 STEP 方法中(接近)初始可行性的优势,我们提出了一个包含可行性搜索阶段的两阶段框架,旨在找到一个接近可行的初始点。此外,为了增强 STEP 算法的适应性,我们提出了一种自适应变体,通过自适应调整其参数,同时进行复杂性分析。对风险规避型投资组合优化问题和正交非负矩阵分解的数值结果表明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信