Generalized Pohst inequality and small regulators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Francesco Battistoni, Giuseppe Molteni
{"title":"Generalized Pohst inequality and small regulators","authors":"Francesco Battistoni, Giuseppe Molteni","doi":"10.1090/mcom/3954","DOIUrl":null,"url":null,"abstract":"<p>Current methods for the classification of number fields with small regulator depend mainly on an upper bound for the discriminant, which can be improved by looking for the best possible upper bound of a specific polynomial function over a hypercube. In this paper, we provide new and effective upper bounds for the case of fields with one complex embedding and degree between five and nine: this is done by adapting the strategy we have adopted to study the totally real case, but for this new setting several new computational issues had to be overcome. As a consequence, we detect the four number fields of signature <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis r 1 comma r 2 right-parenthesis equals left-parenthesis 6 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>6</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(r_1,r_2)=(6,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with smallest regulator; we also expand current lists of number fields with small regulator in signatures <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 3 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(3,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 4 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(4,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 5 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(5,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Current methods for the classification of number fields with small regulator depend mainly on an upper bound for the discriminant, which can be improved by looking for the best possible upper bound of a specific polynomial function over a hypercube. In this paper, we provide new and effective upper bounds for the case of fields with one complex embedding and degree between five and nine: this is done by adapting the strategy we have adopted to study the totally real case, but for this new setting several new computational issues had to be overcome. As a consequence, we detect the four number fields of signature ( r 1 , r 2 ) = ( 6 , 1 ) (r_1,r_2)=(6,1) with smallest regulator; we also expand current lists of number fields with small regulator in signatures ( 3 , 1 ) (3,1) , ( 4 , 1 ) (4,1) and ( 5 , 1 ) (5,1) .

广义波斯特不等式和小型调节器
目前对具有小调节器的数域进行分类的方法主要依赖于判别式的上界,而判别式的上界可以通过在超立方体上寻找特定多项式函数的最佳上界来改进。在本文中,我们为有一个复嵌入且阶数在 5 到 9 之间的数域提供了新的有效上界:这是通过调整我们在研究完全实数情况时采用的策略实现的,但对于这种新情况,必须克服几个新的计算问题。因此,我们发现了具有最小调节器的签名 ( r 1 , r 2 ) = ( 6 , 1 ) (r_1,r_2)=(6,1) 的四个数域;我们还扩充了当前具有小调节器的签名 ( 3 , 1 ) (3,1) , ( 4 , 1 ) (4,1) 和 ( 5 , 1 ) (5,1) 的数域列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信