Convergence problem of the generalized Kadomtsev–Petviashvili II equation in anisotropic Sobolev space

Qiaoqiao Zhang, Meihua Yang, Haoyuan Xu, Wei Yan
{"title":"Convergence problem of the generalized Kadomtsev–Petviashvili II equation in anisotropic Sobolev space","authors":"Qiaoqiao Zhang, Meihua Yang, Haoyuan Xu, Wei Yan","doi":"10.1007/s00030-024-00949-0","DOIUrl":null,"url":null,"abstract":"<p>The almost everywhere pointwise and uniform convergences for the generalized KP-II equation are investigated when the initial data is in anisotropic Sobolev space <span>\\(H^{s_{1},s_{2}}({\\textbf{R}}^{2})\\)</span>. Firstly, we show that the solution <i>u</i>(<i>x</i>, <i>y</i>, <i>t</i>) converges pointwisely to the initial data <span>\\(f(x, y)\\in H^{s_{1},s_{2}}({{\\textbf{R}}}^{2}) \\)</span> for a.e. <span>\\((x, y) \\in {\\textbf{R}}^{2}\\)</span> when <span>\\(s_{1}\\ge \\frac{1}{4}\\)</span>, <span>\\(s_{2}\\ge \\frac{1}{4}\\)</span>. The proof relies upon the Strichartz estimate and high-low frequency decomposition. Secondly, We prove that <span>\\(s_{1}\\ge \\frac{1}{4}\\)</span>, <span>\\(s_{2}\\ge \\frac{1}{4}\\)</span> is a necessary condition for the maximal function estimate of the generalized KP-II equation to hold. Finally, by using the Fourier restriction norm method, we establish the nonlinear smoothing estimate to show the uniform convergence of the generalized KP-II equation in <span>\\(H^{s_{1},s_{2}} ({{\\textbf{R}}}^{2}) \\)</span> with <span>\\( s_{1}\\ge \\frac{3}{2}-\\frac{\\alpha }{4}+\\epsilon ,\\ s_{2}&gt;\\frac{1}{2}\\)</span> and <span>\\(\\alpha \\ge 4 \\)</span>.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00949-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The almost everywhere pointwise and uniform convergences for the generalized KP-II equation are investigated when the initial data is in anisotropic Sobolev space \(H^{s_{1},s_{2}}({\textbf{R}}^{2})\). Firstly, we show that the solution u(xyt) converges pointwisely to the initial data \(f(x, y)\in H^{s_{1},s_{2}}({{\textbf{R}}}^{2}) \) for a.e. \((x, y) \in {\textbf{R}}^{2}\) when \(s_{1}\ge \frac{1}{4}\), \(s_{2}\ge \frac{1}{4}\). The proof relies upon the Strichartz estimate and high-low frequency decomposition. Secondly, We prove that \(s_{1}\ge \frac{1}{4}\), \(s_{2}\ge \frac{1}{4}\) is a necessary condition for the maximal function estimate of the generalized KP-II equation to hold. Finally, by using the Fourier restriction norm method, we establish the nonlinear smoothing estimate to show the uniform convergence of the generalized KP-II equation in \(H^{s_{1},s_{2}} ({{\textbf{R}}}^{2}) \) with \( s_{1}\ge \frac{3}{2}-\frac{\alpha }{4}+\epsilon ,\ s_{2}>\frac{1}{2}\) and \(\alpha \ge 4 \).

各向异性索波列夫空间中广义卡多姆采夫-彼得维亚什维利 II方程的收敛问题
当初始数据位于各向异性的索波列夫空间 \(H^{s_{1},s_{2}}({\textbf{R}}^{2})\) 时,研究了广义 KP-II 方程的几乎无处不在的点收敛性和均匀收敛性。首先,我们证明解 u(x, y, t) 在 a. 的条件下,点向收敛于初始数据 \(f(x, y)\in H^{s_{1},s_{2}}({\textbf{R}}^{2}).e. \((x, y) \in {\textbf{R}}^{2}\) when \(s_{1}\ge \frac{1}{4}\), \(s_{2}\ge \frac{1}{4}\).证明依赖于斯特里查兹估计和高低频分解。其次,我们证明了 \(s_{1}\ge \frac{1}{4}\), \(s_{2}\ge \frac{1}{4}\) 是广义 KP-II 方程最大函数估计成立的必要条件。最后,通过使用傅里叶限制规范方法,我们建立了非线性平滑估计,以证明广义 KP-II 方程在 \(H^{s_{1},s_{2}} 中的均匀收敛性。({{textbf{R}}^{2}) \) with \( s_{1}\ge \frac{3}{2}-\frac{alpha }{4}+\epsilon ,\ s_{2}>\frac{1}{2}\) and\(\alpha \ge 4 \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信