Recent pharmacological insights about imidazole hybrids: a comprehensive review

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Samet Poyraz, Metin Yıldırım, Mehmet Ersatir
{"title":"Recent pharmacological insights about imidazole hybrids: a comprehensive review","authors":"Samet Poyraz,&nbsp;Metin Yıldırım,&nbsp;Mehmet Ersatir","doi":"10.1007/s00044-024-03230-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, we evaluated the biological activities of hybrid molecules incorporating imidazoles—a cornerstone in medicinal chemistry known for their broad pharmacological spectrum, attributed to the chemical characteristics of their nitrogen atoms. In contrast to earlier reviews, which have concentrated their attention only on a single biological activity that is connected with these hybrid molecules, this review brings together the findings of a variety of investigations that cover a wide range of significant activities including antibacterial, antifungal, antituberculosis, antiviral, anticancer, antioxidant, antidiabetic, anti-inflammatory, and analgesic effects, along with the inhibition of cholinesterase, carbonic anhydrase, and monoamine oxidase (MAO) enzymes. Furthermore, we examined significant pharmacophores such as triazole, thiazole, indole, pyrazole, quinoline, sulfonamide, pyridine, chalcone, coumarin, pyrrole, and pyrrolidine, integrated into imidazole hybrids. Molecular docking studies and structure-activity relationship (SAR) discussions provide insight into the interactions of imidazole hybrids with key enzymes and receptors. This work aspires to contribute valuable insights into the development of novel imidazole hybrids, aiming to address critical health challenges of our era.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 6","pages":"839 - 868"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03230-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this review, we evaluated the biological activities of hybrid molecules incorporating imidazoles—a cornerstone in medicinal chemistry known for their broad pharmacological spectrum, attributed to the chemical characteristics of their nitrogen atoms. In contrast to earlier reviews, which have concentrated their attention only on a single biological activity that is connected with these hybrid molecules, this review brings together the findings of a variety of investigations that cover a wide range of significant activities including antibacterial, antifungal, antituberculosis, antiviral, anticancer, antioxidant, antidiabetic, anti-inflammatory, and analgesic effects, along with the inhibition of cholinesterase, carbonic anhydrase, and monoamine oxidase (MAO) enzymes. Furthermore, we examined significant pharmacophores such as triazole, thiazole, indole, pyrazole, quinoline, sulfonamide, pyridine, chalcone, coumarin, pyrrole, and pyrrolidine, integrated into imidazole hybrids. Molecular docking studies and structure-activity relationship (SAR) discussions provide insight into the interactions of imidazole hybrids with key enzymes and receptors. This work aspires to contribute valuable insights into the development of novel imidazole hybrids, aiming to address critical health challenges of our era.

Abstract Image

关于咪唑杂环的最新药理学见解:全面综述
在这篇综述中,我们评估了含有咪唑的杂化分子的生物活性--咪唑是药物化学的基石,因其氮原子的化学特性而具有广泛的药理作用。以前的综述只关注与这些杂化分子有关的单一生物活性,与此不同的是,本综述汇集了各种研究结果,涵盖了抗菌、抗真菌、抗结核、抗病毒、抗癌、抗氧化、抗糖尿病、抗炎和镇痛作用,以及对胆碱酯酶、碳酸酐酶和单胺氧化酶(MAO)的抑制作用等多种重要活性。此外,我们还研究了集成到咪唑杂交化合物中的重要药亲体,如三唑、噻唑、吲哚、吡唑、喹啉、磺酰胺、吡啶、查尔酮、香豆素、吡咯和吡咯烷。分子对接研究和结构-活性关系(SAR)讨论有助于深入了解咪唑类杂交化合物与关键酶和受体之间的相互作用。这项研究旨在为开发新型咪唑类杂交化合物提供有价值的见解,以应对当今时代的重大健康挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信