Package CovRegpy: Regularized covariance regression and forecasting in Python

IF 1.5 Q3 BUSINESS, FINANCE
Cole van Jaarsveldt, Gareth W. Peters, Matthew Ames, Mike Chantler
{"title":"Package CovRegpy: Regularized covariance regression and forecasting in Python","authors":"Cole van Jaarsveldt, Gareth W. Peters, Matthew Ames, Mike Chantler","doi":"10.1017/s1748499524000101","DOIUrl":null,"url":null,"abstract":"This paper will outline the functionality available in the <jats:sans-serif>CovRegpy</jats:sans-serif> package which was written for actuarial practitioners, wealth managers, fund managers, and portfolio analysts in the language of <jats:monospace>Python 3.11</jats:monospace>. The objective is to develop a new class of covariance regression factor models for covariance forecasting, along with a library of portfolio allocation tools that integrate with this new covariance forecasting framework. The novelty is in two stages: the type of covariance regression model and factor extractions used to construct the covariates used in the covariance regression, along with a powerful portfolio allocation framework for dynamic multi-period asset investment management. The major contributions of package <jats:sans-serif>CovRegpy</jats:sans-serif> can be found on the GitHub repository for this library in the scripts: <jats:monospace>CovRegpy.py</jats:monospace>, <jats:monospace>CovRegpy_DCC.py</jats:monospace>, <jats:monospace>CovRegpy_RPP.py</jats:monospace>, <jats:monospace>CovRegpy_SSA.py</jats:monospace>, <jats:monospace>CovRegpy_SSD.py</jats:monospace>, and <jats:monospace>CovRegpy_X11.py</jats:monospace>. These six scripts contain implementations of software features including multivariate covariance time series models based on the regularized covariance regression (RCR) framework, dynamic conditional correlation (DCC) framework, risk premia parity (RPP) weighting functions, singular spectrum analysis (SSA), singular spectrum decomposition (SSD), and X11 decomposition framework, respectively. These techniques can be used sequentially or independently with other techniques to extract implicit factors to use them as covariates in the RCR framework to forecast covariance and correlation structures and finally apply portfolio weighting strategies based on the portfolio risk measures based on forecasted covariance assumptions. Explicit financial factors can be used in the covariance regression framework, implicit factors can be used in the traditional explicit market factor setting, and RPP techniques with long/short equity weighting strategies can be used in traditional covariance assumption frameworks. We examine, herein, two real-world case studies for actuarial practitioners. The first of these is a modification (demonstrating the regularization of covariance regression) of the original example from Hoff &amp; Niu ((2012). <jats:italic>Statistica Sinica</jats:italic>, 22(2), 729–753) which modeled the covariance and correlative relationship that exists between forced expiratory volume (FEV) and age and FEV and height. We examine this within the context of making probabilistic predictions about mortality rates in patients with chronic obstructive pulmonary disease. The second case study is a more complete example using this package wherein we present a funded and unfunded UK pension example. The decomposition algorithm isolates high-, mid-, and low-frequency structures from FTSE 100 constituents over 20 years. These are used to forecast the forthcoming quarter’s covariance structure to weight the portfolio based on the RPP strategy. These fully funded pensions are compared against the performance of a fully unfunded pension using the FTSE 100 index performance as a proxy.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"42 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499524000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper will outline the functionality available in the CovRegpy package which was written for actuarial practitioners, wealth managers, fund managers, and portfolio analysts in the language of Python 3.11. The objective is to develop a new class of covariance regression factor models for covariance forecasting, along with a library of portfolio allocation tools that integrate with this new covariance forecasting framework. The novelty is in two stages: the type of covariance regression model and factor extractions used to construct the covariates used in the covariance regression, along with a powerful portfolio allocation framework for dynamic multi-period asset investment management. The major contributions of package CovRegpy can be found on the GitHub repository for this library in the scripts: CovRegpy.py, CovRegpy_DCC.py, CovRegpy_RPP.py, CovRegpy_SSA.py, CovRegpy_SSD.py, and CovRegpy_X11.py. These six scripts contain implementations of software features including multivariate covariance time series models based on the regularized covariance regression (RCR) framework, dynamic conditional correlation (DCC) framework, risk premia parity (RPP) weighting functions, singular spectrum analysis (SSA), singular spectrum decomposition (SSD), and X11 decomposition framework, respectively. These techniques can be used sequentially or independently with other techniques to extract implicit factors to use them as covariates in the RCR framework to forecast covariance and correlation structures and finally apply portfolio weighting strategies based on the portfolio risk measures based on forecasted covariance assumptions. Explicit financial factors can be used in the covariance regression framework, implicit factors can be used in the traditional explicit market factor setting, and RPP techniques with long/short equity weighting strategies can be used in traditional covariance assumption frameworks. We examine, herein, two real-world case studies for actuarial practitioners. The first of these is a modification (demonstrating the regularization of covariance regression) of the original example from Hoff & Niu ((2012). Statistica Sinica, 22(2), 729–753) which modeled the covariance and correlative relationship that exists between forced expiratory volume (FEV) and age and FEV and height. We examine this within the context of making probabilistic predictions about mortality rates in patients with chronic obstructive pulmonary disease. The second case study is a more complete example using this package wherein we present a funded and unfunded UK pension example. The decomposition algorithm isolates high-, mid-, and low-frequency structures from FTSE 100 constituents over 20 years. These are used to forecast the forthcoming quarter’s covariance structure to weight the portfolio based on the RPP strategy. These fully funded pensions are compared against the performance of a fully unfunded pension using the FTSE 100 index performance as a proxy.
包 CovRegpy:用 Python 进行正则化协方差回归和预测
本文将概述 CovRegpy 软件包的功能,该软件包是用 Python 3.11 编写的,面向精算从业人员、财富经理、基金经理和投资组合分析师。其目的是为协方差预测开发一类新的协方差回归因子模型,以及与这一新的协方差预测框架相集成的投资组合分配工具库。新颖性体现在两个阶段:用于构建协方差回归的协方差的协方差回归模型和因子提取类型,以及用于动态多期资产投资管理的强大的投资组合分配框架。CovRegpy 软件包的主要贡献可在 GitHub 存储库的脚本中找到:CovRegpy.py、CovRegpy_DCC.py、CovRegpy_RPP.py、CovRegpy_SSA.py、CovRegpy_SSD.py 和 CovRegpy_X11.py。这六个脚本包含软件功能的实现,包括分别基于正则化协方差回归(RCR)框架、动态条件相关(DCC)框架、风险前提平价(RPP)加权函数、奇异谱分析(SSA)、奇异谱分解(SSD)和 X11 分解框架的多变量协方差时间序列模型。这些技术可以连续使用,也可以与其他技术一起独立使用,以提取隐式因子,将其用作 RCR 框架中的协变量来预测协方差和相关性结构,最后根据基于预测协方差假设的投资组合风险度量来应用投资组合加权策略。显式金融因子可用于协方差回归框架,隐式因子可用于传统的显式市场因子设置,带有多空股票权重策略的 RPP 技术可用于传统的协方差假设框架。在此,我们为精算从业人员研究了两个实际案例。第一个案例是对 Hoff & Niu((2012).Statistica Sinica, 22(2), 729-753)中的原始示例进行了修改(演示了正则化协方差回归),该示例模拟了强迫呼气量(FEV)与年龄以及强迫呼气量与身高之间存在的协方差和相关关系。我们在对慢性阻塞性肺病患者的死亡率进行概率预测时对此进行了研究。第二个案例研究是使用该软件包的一个更完整的示例,我们在其中介绍了一个资金到位和资金未到位的英国养老金示例。分解算法从富时 100 指数成分股中分离出 20 年来的高频、中频和低频结构。这些结构用于预测下一季度的协方差结构,以根据 RPP 策略对投资组合进行加权。以富时 100 指数的表现为代表,将这些全额注资养老金与全额无注资养老金的表现进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信