Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks

IF 1.5 Q3 BUSINESS, FINANCE
Donatien Hainaut
{"title":"Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks","authors":"Donatien Hainaut","doi":"10.1017/s1748499524000095","DOIUrl":null,"url":null,"abstract":"Guaranteed minimum accumulation benefits (GMABs) are retirement savings vehicles that protect the policyholder against downside market risk. This article proposes a valuation method for these contracts based on physics-inspired neural networks (PINNs), in the presence of multiple financial and biometric risk factors. A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman–Kac (FK) equation, which is a partial differential equation (PDE) governing the GMAB price in an arbitrage-free market. In our context, the FK PDE depends on multiple variables and is difficult to solve using classical finite difference approximations. In comparison, PINNs constitute an efficient alternative that can evaluate GMABs with various specifications without the need for retraining. To illustrate this, we consider a market with four risk factors. We first derive a closed-form expression for the GMAB that serves as a benchmark for the PINN. Next, we propose a scaled version of the FK equation that we solve using a PINN. Pricing errors are analyzed in a numerical illustration.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"43 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499524000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Guaranteed minimum accumulation benefits (GMABs) are retirement savings vehicles that protect the policyholder against downside market risk. This article proposes a valuation method for these contracts based on physics-inspired neural networks (PINNs), in the presence of multiple financial and biometric risk factors. A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman–Kac (FK) equation, which is a partial differential equation (PDE) governing the GMAB price in an arbitrage-free market. In our context, the FK PDE depends on multiple variables and is difficult to solve using classical finite difference approximations. In comparison, PINNs constitute an efficient alternative that can evaluate GMABs with various specifications without the need for retraining. To illustrate this, we consider a market with four risk factors. We first derive a closed-form expression for the GMAB that serves as a benchmark for the PINN. Next, we propose a scaled version of the FK equation that we solve using a PINN. Pricing errors are analyzed in a numerical illustration.
利用物理启发神经网络评估最低保证累积福利(GMABs)
保证最低累积给付(GMABs)是一种退休储蓄工具,可保护投保人免受市场下行风险的影响。本文提出了一种基于物理启发神经网络(PINNs)的评估方法,在存在多种金融和生物风险因素的情况下对这些合同进行评估。PINN 将物理学原理融入其学习过程,以提高其解决复杂问题的效率。在本文中,驱动原理是费曼-卡克(FK)方程,这是一个管理无套利市场中 GMAB 价格的偏微分方程(PDE)。在我们的语境中,FK PDE 取决于多个变量,难以用经典的有限差分近似方法求解。相比之下,PINNs 是一种高效的替代方法,可以评估各种规格的 GMAB,而无需重新训练。为了说明这一点,我们考虑了一个有四个风险因素的市场。我们首先推导出 GMAB 的闭式表达式,作为 PINN 的基准。接下来,我们提出了 FK 方程的缩放版本,并使用 PINN 对其进行求解。定价误差通过数值说明进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信