Picard Approximation of a Singular Backward Stochastic Nonlinear Volterra Integral Equation

IF 1.9 3区 数学 Q1 MATHEMATICS
Arzu Ahmadova, Nazim I. Mahmudov
{"title":"Picard Approximation of a Singular Backward Stochastic Nonlinear Volterra Integral Equation","authors":"Arzu Ahmadova, Nazim I. Mahmudov","doi":"10.1007/s12346-024-01043-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove that Picard iterations of BSDEs with globally Lipschitz continuous nonlinearities converge exponentially fast to the solution. Our main result in this paper is to establish a fundamental lemma to prove the global existence and uniqueness of an adapted solution to a singular backward stochastic nonlinear Volterra integral equation (for short, singular BSVIE) of order <span>\\(\\alpha \\in (\\frac{1}{2},1)\\)</span> under a weaker condition than Lipschitz one in Hilbert space.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"209 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01043-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove that Picard iterations of BSDEs with globally Lipschitz continuous nonlinearities converge exponentially fast to the solution. Our main result in this paper is to establish a fundamental lemma to prove the global existence and uniqueness of an adapted solution to a singular backward stochastic nonlinear Volterra integral equation (for short, singular BSVIE) of order \(\alpha \in (\frac{1}{2},1)\) under a weaker condition than Lipschitz one in Hilbert space.

奇异后向随机非线性 Volterra 积分方程的 Picard 近似算法
在本文中,我们证明了具有全局 Lipschitz 连续非线性的 BSDE 的 Picard 迭代会以指数级速度收敛到解。我们在本文中的主要结果是建立了一个基本 Lemma,以证明在比希尔伯特空间中的 Lipschitz 条件更弱的条件下,阶数为 \(α \in (\frac{1}{2},1)\) 的奇异后向随机非线性 Volterra 积分方程(简称奇异 BSVIE)的适应解的全局存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信