Propagation of the Front of Random Walk with Periodic Branching Sources

IF 0.2 Q4 MATHEMATICS
E. Vl. Bulinskaya
{"title":"Propagation of the Front of Random Walk with Periodic Branching Sources","authors":"E. Vl. Bulinskaya","doi":"10.3103/s0027132224700049","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider the model of branching random walk on an integer lattice <span>\\(\\mathbb{Z}^{d}\\)</span> with periodic sources of branching. It is supposed that the regime of branching is supercritical and the Cramér condition is satisfied for a jump of the random walk. The theorem established describes the rate of front propagation for particles population over the lattice as the time increases unboundedly. The proofs are based on fundamental results related to the spatial spread of general branching random walk.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132224700049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the model of branching random walk on an integer lattice \(\mathbb{Z}^{d}\) with periodic sources of branching. It is supposed that the regime of branching is supercritical and the Cramér condition is satisfied for a jump of the random walk. The theorem established describes the rate of front propagation for particles population over the lattice as the time increases unboundedly. The proofs are based on fundamental results related to the spatial spread of general branching random walk.

Abstract Image

带有周期性分支源的随机漫步前沿传播
摘要 我们考虑了整数网格 \(\mathbb{Z}^{d}\)上具有周期性分支源的分支随机行走模型。我们假定分支机制是超临界的,随机游走的跳跃满足克拉梅尔条件。所建立的定理描述了随着时间的无限制增加,粒子群在网格上的前沿传播速度。证明基于与一般分支随机游走的空间扩散相关的基本结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信