Deformations of commutative Artinian algebras

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Aleksandrov
{"title":"Deformations of commutative Artinian algebras","authors":"A. Aleksandrov","doi":"10.1090/spmj/1783","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to the study of deformations of Artinian algebras and zero-dimensional germs of varieties. In particular, an approach is developed to solving the open problem about the nonexistence of rigid Artinian algebras; it is based essentially on the use of the canonical duality in the cotangent complex. Thus, it is shown that there are no rigid Gorenstein Artinian algebras and rigid almost complete intersections. The proof of the latter statement is based on the properties of the torsion functors. More precisely, the tensor product of the conormal and canonical modules of the corresponding Artinian algebra is calculated. In this case, the homology and cohomology groups of higher degrees are also found. Among other things, some estimates are obtained for the dimension of the spaces of the first lower and upper cotangent functors of Artinian algebras, and the relationship between them is described. In conclusion, several examples of nonsmoothable Artinian noncomplete intersections are examined, and some unusual properties of such algebras are discussed.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"2015 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1783","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to the study of deformations of Artinian algebras and zero-dimensional germs of varieties. In particular, an approach is developed to solving the open problem about the nonexistence of rigid Artinian algebras; it is based essentially on the use of the canonical duality in the cotangent complex. Thus, it is shown that there are no rigid Gorenstein Artinian algebras and rigid almost complete intersections. The proof of the latter statement is based on the properties of the torsion functors. More precisely, the tensor product of the conormal and canonical modules of the corresponding Artinian algebra is calculated. In this case, the homology and cohomology groups of higher degrees are also found. Among other things, some estimates are obtained for the dimension of the spaces of the first lower and upper cotangent functors of Artinian algebras, and the relationship between them is described. In conclusion, several examples of nonsmoothable Artinian noncomplete intersections are examined, and some unusual properties of such algebras are discussed.

交换阿尔丁代数的变形
本文致力于研究阿蒂尼安代数的变形和品种的零维胚芽。特别是,本文提出了一种方法来解决关于刚性阿汀代数不存在的公开问题;这种方法主要基于余切复数中典型对偶性的使用。因此,可以证明不存在刚性戈伦斯坦阿蒂尼亚代数和刚性几乎完全交集。后一种说法的证明基于扭转函数的性质。更确切地说,我们计算了相应阿蒂尼代数的常模和规范模的张量乘积。在这种情况下,还可以找到高阶的同调群和同调群。此外,还得到了阿蒂尼代数的第一下切和上切函数空间维数的一些估计值,并描述了它们之间的关系。最后,研究了几个非光滑阿蒂尼亚非完全交集的例子,并讨论了这类代数的一些不寻常性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信