Effects of acclimation temperature and feed restriction on the metabolic performance of green sturgeon

IF 2.6 3区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION
Kenneth W Zillig, Kelly D Hannan, Sarah E Baird, Dennis E Cocherell, Jamilynn B Poletto, Nann A Fangue
{"title":"Effects of acclimation temperature and feed restriction on the metabolic performance of green sturgeon","authors":"Kenneth W Zillig, Kelly D Hannan, Sarah E Baird, Dennis E Cocherell, Jamilynn B Poletto, Nann A Fangue","doi":"10.1093/conphys/coae021","DOIUrl":null,"url":null,"abstract":"Green sturgeon (Acipenser medirostris) are an anadromous threatened species of sturgeon found along the Pacific coast of North America. The southern distinct population segment only spawns in the Sacramento River and is exposed to water temperatures kept artificially cold for the conservation and management of winter-run Chinook salmon (Oncorhynchus tshawytscha). Past research has demonstrated costs of cold-water rearing including reduced growth rates, condition and survivorship of juvenile green sturgeon. Our research investigates how the stressors of water temperature and food limitation influence the metabolic performance of green sturgeon. We reared green sturgeon at two acclimation temperatures (13 and 19°C) and two ration amounts (100% and 40% of optimal feed). We then measured the routine and maximum metabolic rates (RMR and MMR, respectively) of sturgeon acclimated to these rearing conditions across a range of acute temperature exposures (11 to 31°C). Among both temperature acclimation treatments (13 or 19°C), we found that feed restriction reduced RMR across a range of acute temperatures. The influence of feed restriction on RMR and MMR interacted with acclimation temperature. Fish reared at 13°C preserved their MMR and aerobic scope (AS) despite feed restriction, while fish fed reduced rations and acclimated to 19°C showed reduced MMR and AS capacity primarily at temperatures below 16°C. The sympatry of threatened green sturgeon with endangered salmonids produces a conservation conflict, such that cold-water releases for the conservation of at-risk salmonids may constrain the metabolic performance of juvenile green sturgeon. Understanding the impacts of environmental conditions (e.g. temperature, dissolved oxygen) on ecological interactions of green sturgeon will be necessary to determine the influence of salmonid-focused management.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae021","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Green sturgeon (Acipenser medirostris) are an anadromous threatened species of sturgeon found along the Pacific coast of North America. The southern distinct population segment only spawns in the Sacramento River and is exposed to water temperatures kept artificially cold for the conservation and management of winter-run Chinook salmon (Oncorhynchus tshawytscha). Past research has demonstrated costs of cold-water rearing including reduced growth rates, condition and survivorship of juvenile green sturgeon. Our research investigates how the stressors of water temperature and food limitation influence the metabolic performance of green sturgeon. We reared green sturgeon at two acclimation temperatures (13 and 19°C) and two ration amounts (100% and 40% of optimal feed). We then measured the routine and maximum metabolic rates (RMR and MMR, respectively) of sturgeon acclimated to these rearing conditions across a range of acute temperature exposures (11 to 31°C). Among both temperature acclimation treatments (13 or 19°C), we found that feed restriction reduced RMR across a range of acute temperatures. The influence of feed restriction on RMR and MMR interacted with acclimation temperature. Fish reared at 13°C preserved their MMR and aerobic scope (AS) despite feed restriction, while fish fed reduced rations and acclimated to 19°C showed reduced MMR and AS capacity primarily at temperatures below 16°C. The sympatry of threatened green sturgeon with endangered salmonids produces a conservation conflict, such that cold-water releases for the conservation of at-risk salmonids may constrain the metabolic performance of juvenile green sturgeon. Understanding the impacts of environmental conditions (e.g. temperature, dissolved oxygen) on ecological interactions of green sturgeon will be necessary to determine the influence of salmonid-focused management.
驯化温度和饲料限制对绿鲟新陈代谢性能的影响
绿鲟(Acipenser medirostris)是一种溯河而上的受威胁鲟鱼,分布于北美太平洋沿岸。其南部独特的种群区段仅在萨克拉门托河产卵,并暴露在为保护和管理冬流大鳞大麻哈鱼(Oncorhynchus tshawytscha)而人为保持的低水温下。过去的研究已经证明了冷水饲养的代价,包括降低绿鲟幼鱼的生长率、状况和存活率。我们的研究调查了水温和食物限制等压力因素如何影响绿鲟的代谢表现。我们在两种适应温度(13 和 19°C)和两种饲料量(100% 和 40% 的最佳饲料)下饲养绿鲟。然后,我们测量了鲟鱼在这些饲养条件下的常规代谢率和最大代谢率(分别为RMR和MMR)。在两种温度驯化处理(13或19°C)中,我们发现,在一系列急性温度条件下,限制摄食会降低鲟鱼的常规代谢率(RMR)和最大代谢率(MMR)。限食对RMR和MMR的影响与驯化温度相互影响。在13°C条件下饲养的鱼类尽管受到饲料限制,但仍能保持其MMR和有氧范围(AS),而喂食减少的日粮并适应19°C的鱼类主要在温度低于16°C时表现出MMR和AS能力下降。濒危绿鲟与濒危鲑科鱼类的共生关系产生了保护冲突,因此为保护濒危鲑科鱼类而进行的冷水放流可能会限制绿鲟幼鱼的新陈代谢性能。有必要了解环境条件(如温度、溶解氧)对绿鲟生态相互作用的影响,以确定以鲑鱼为重点的管理措施的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Conservation Physiology
Conservation Physiology Environmental Science-Management, Monitoring, Policy and Law
CiteScore
5.10
自引率
3.70%
发文量
71
审稿时长
11 weeks
期刊介绍: Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology. Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信