Functions of perturbed noncommuting unbounded selfadjoint operators

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Aleksandrov, V. Peller
{"title":"Functions of perturbed noncommuting unbounded selfadjoint operators","authors":"A. Aleksandrov, V. Peller","doi":"10.1090/spmj/1784","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a function on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the inhomogeneous Besov space <inline-formula content-type=\"math/tex\"> <tex-math> {\\text \\textit {\\Russian {B}}}_{\\infty ,1}^{1}(\\mathbb {R}^2)</tex-math></inline-formula>. For a pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma upper B right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of not necessarily bounded and not necessarily commuting self-adjoint operators, the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A comma upper B right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is introduced as a densely defined linear operator. It is shown that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p less-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\le p\\le 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A 1 comma upper B 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A_1,B_1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A 2 comma upper B 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A_2,B_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are pairs of not necessarily bounded and not necessarily commuting selfadjoint operators such that both <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 1 minus upper A 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A_1-A_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1 minus upper B 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_1-B_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belong to the Schatten–von Neumann class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold-italic upper S Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"bold-italic\">S</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">{\\boldsymbol {S}}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/tex\"> <tex-math> f\\in {\\text \\textit {\\Russian {B}}} _{\\infty ,1}^{1}(\\mathbb {R}^2)</tex-math></inline-formula>, then the following Lipschitz type estimate holds: <disp-formula content-type=\"math/tex\"> <tex-math> \\begin{equation*} \\|f(A_1,B_1)-f(A_2,B_2)\\|_{{\\boldsymbol {S}}_p} \\le \\operatorname {const}\\|f\\|_{\\text \\textit {\\Russian {B}}_{\\infty ,1}^{1}}\\max \\big \\{\\|A_1-A_2\\|_{{\\boldsymbol {S}}_p},\\|B_1-B_2\\|_{{\\boldsymbol {S}}_p}\\big \\}. \\end{equation*}</tex-math> </disp-formula></p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"128 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1784","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let f f be a function on R 2 \mathbb {R}^2 in the inhomogeneous Besov space {\text \textit {\Russian {B}}}_{\infty ,1}^{1}(\mathbb {R}^2). For a pair ( A , B ) (A,B) of not necessarily bounded and not necessarily commuting self-adjoint operators, the function f ( A , B ) f(A,B) of A A and B B is introduced as a densely defined linear operator. It is shown that if 1 p 2 1\le p\le 2 , ( A 1 , B 1 ) (A_1,B_1) and ( A 2 , B 2 ) (A_2,B_2) are pairs of not necessarily bounded and not necessarily commuting selfadjoint operators such that both A 1 A 2 A_1-A_2 and B 1 B 2 B_1-B_2 belong to the Schatten–von Neumann class S p {\boldsymbol {S}}_p and f\in {\text \textit {\Russian {B}}} _{\infty ,1}^{1}(\mathbb {R}^2), then the following Lipschitz type estimate holds: \begin{equation*} \|f(A_1,B_1)-f(A_2,B_2)\|_{{\boldsymbol {S}}_p} \le \operatorname {const}\|f\|_{\text \textit {\Russian {B}}_{\infty ,1}^{1}}\max \big \{\|A_1-A_2\|_{{\boldsymbol {S}}_p},\|B_1-B_2\|_{{\boldsymbol {S}}_p}\big \}. \end{equation*}

扰动非交换无界自兼算子的函数
让 f f 是非均匀贝索夫空间 {\text \textit {\Russian {B}}}_{\infty ,1}^{1}(\mathbb {R}^2) 中 R 2 \mathbb {R}^2 上的函数。对于一对 ( A , B ) (A,B) 不一定有界且不一定相交的自相交算子,A A 和 B B 的函数 f ( A , B ) f(A,B) 被引入为密集定义的线性算子。结果表明,如果 1 ≤ p ≤ 2 1\le p\le 2 , ( A 1 , B 1 ) (A_1,B_1) 和 ( A 2 , B 2 ) (A_2. B_2) 是成对的、B_2) 是一对不一定有界且不一定相交的自并算子,使得 A 1 - A 2 A_1-A_2 和 B 1 - B 2 B_1-B_2 都属于 Schatten-von Neumann 类 S p {\boldsymbol {S}}_p 且 f\in {text \textit {\Russian {B}}}_{infty ,1}^{1}(\mathbb {R}^2),那么下面的 Lipschitz 类型估计成立: \开始\|f(A_1,B_1)-f(A_2,B_2)\|_{{\boldsymbol {S}}_p}\最大值(big):||A_1-A_2|_{{boldsymbol {S}_p}, |B_1-B_2|_{{boldsymbol {S}_p}\big \}。\end{equation*}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信