{"title":"Functions of perturbed noncommuting unbounded selfadjoint operators","authors":"A. Aleksandrov, V. Peller","doi":"10.1090/spmj/1784","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a function on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the inhomogeneous Besov space <inline-formula content-type=\"math/tex\"> <tex-math> {\\text \\textit {\\Russian {B}}}_{\\infty ,1}^{1}(\\mathbb {R}^2)</tex-math></inline-formula>. For a pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma upper B right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of not necessarily bounded and not necessarily commuting self-adjoint operators, the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A comma upper B right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is introduced as a densely defined linear operator. It is shown that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p less-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1\\le p\\le 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A 1 comma upper B 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A_1,B_1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A 2 comma upper B 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A_2,B_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are pairs of not necessarily bounded and not necessarily commuting selfadjoint operators such that both <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 1 minus upper A 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A_1-A_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1 minus upper B 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_1-B_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belong to the Schatten–von Neumann class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold-italic upper S Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"bold-italic\">S</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">{\\boldsymbol {S}}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/tex\"> <tex-math> f\\in {\\text \\textit {\\Russian {B}}} _{\\infty ,1}^{1}(\\mathbb {R}^2)</tex-math></inline-formula>, then the following Lipschitz type estimate holds: <disp-formula content-type=\"math/tex\"> <tex-math> \\begin{equation*} \\|f(A_1,B_1)-f(A_2,B_2)\\|_{{\\boldsymbol {S}}_p} \\le \\operatorname {const}\\|f\\|_{\\text \\textit {\\Russian {B}}_{\\infty ,1}^{1}}\\max \\big \\{\\|A_1-A_2\\|_{{\\boldsymbol {S}}_p},\\|B_1-B_2\\|_{{\\boldsymbol {S}}_p}\\big \\}. \\end{equation*}</tex-math> </disp-formula></p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"128 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1784","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let ff be a function on R2\mathbb {R}^2 in the inhomogeneous Besov space {\text \textit {\Russian {B}}}_{\infty ,1}^{1}(\mathbb {R}^2). For a pair (A,B)(A,B) of not necessarily bounded and not necessarily commuting self-adjoint operators, the function f(A,B)f(A,B) of AA and BB is introduced as a densely defined linear operator. It is shown that if 1≤p≤21\le p\le 2, (A1,B1)(A_1,B_1) and (A2,B2)(A_2,B_2) are pairs of not necessarily bounded and not necessarily commuting selfadjoint operators such that both A1−A2A_1-A_2 and B1−B2B_1-B_2 belong to the Schatten–von Neumann class Sp{\boldsymbol {S}}_p and f\in {\text \textit {\Russian {B}}} _{\infty ,1}^{1}(\mathbb {R}^2), then the following Lipschitz type estimate holds: \begin{equation*} \|f(A_1,B_1)-f(A_2,B_2)\|_{{\boldsymbol {S}}_p} \le \operatorname {const}\|f\|_{\text \textit {\Russian {B}}_{\infty ,1}^{1}}\max \big \{\|A_1-A_2\|_{{\boldsymbol {S}}_p},\|B_1-B_2\|_{{\boldsymbol {S}}_p}\big \}. \end{equation*}
让 f f 是非均匀贝索夫空间 {\text \textit {\Russian {B}}}_{\infty ,1}^{1}(\mathbb {R}^2) 中 R 2 \mathbb {R}^2 上的函数。对于一对 ( A , B ) (A,B) 不一定有界且不一定相交的自相交算子,A A 和 B B 的函数 f ( A , B ) f(A,B) 被引入为密集定义的线性算子。结果表明,如果 1 ≤ p ≤ 2 1\le p\le 2 , ( A 1 , B 1 ) (A_1,B_1) 和 ( A 2 , B 2 ) (A_2. B_2) 是成对的、B_2) 是一对不一定有界且不一定相交的自并算子,使得 A 1 - A 2 A_1-A_2 和 B 1 - B 2 B_1-B_2 都属于 Schatten-von Neumann 类 S p {\boldsymbol {S}}_p 且 f\in {text \textit {\Russian {B}}}_{infty ,1}^{1}(\mathbb {R}^2),那么下面的 Lipschitz 类型估计成立: \开始\|f(A_1,B_1)-f(A_2,B_2)\|_{{\boldsymbol {S}}_p}\最大值(big):||A_1-A_2|_{{boldsymbol {S}_p}, |B_1-B_2|_{{boldsymbol {S}_p}\big \}。\end{equation*}
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.