Branching processes in nearly degenerate varying environment

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Péter Kevei, Kata Kubatovics
{"title":"Branching processes in nearly degenerate varying environment","authors":"Péter Kevei, Kata Kubatovics","doi":"10.1017/jpr.2024.15","DOIUrl":null,"url":null,"abstract":"We investigate branching processes in varying environment, for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline1.png\"/> <jats:tex-math> $\\overline{f}_n \\to 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline2.png\"/> <jats:tex-math> $\\sum_{n=1}^\\infty (1-\\overline{f}_n)_+ = \\infty$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline3.png\"/> <jats:tex-math> $\\sum_{n=1}^\\infty (\\overline{f}_n - 1)_+ &lt; \\infty$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline4.png\"/> <jats:tex-math> $\\overline{f}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> stands for the offspring mean in generation <jats:italic>n</jats:italic>. Since subcritical regimes dominate, such processes die out almost surely, therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonextinction, and adding immigration. In both cases we show that the process converges in distribution without normalization to a nondegenerate compound-Poisson limit law. The proofs rely on the shape function technique, worked out by Kersting (2020).","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"15 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.15","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate branching processes in varying environment, for which $\overline{f}_n \to 1$ and $\sum_{n=1}^\infty (1-\overline{f}_n)_+ = \infty$ , $\sum_{n=1}^\infty (\overline{f}_n - 1)_+ < \infty$ , where $\overline{f}_n$ stands for the offspring mean in generation n. Since subcritical regimes dominate, such processes die out almost surely, therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonextinction, and adding immigration. In both cases we show that the process converges in distribution without normalization to a nondegenerate compound-Poisson limit law. The proofs rely on the shape function technique, worked out by Kersting (2020).
近乎退化的变化环境中的分支过程
我们研究了变化环境中的分支过程,对于这种过程,$\overline{f}_n \to 1$,$\sum_{n=1}^\infty (1-\overline{f}_n)_+ = \infty$,$\sum_{n=1}^\infty (\overline{f}_n - 1)_+ < \infty$,其中$\overline{f}_n$代表第 n 代的后代平均值。由于亚临界状态占主导地位,这种过程几乎肯定会消亡,因此,为了得到一个非微观极限,我们考虑了两种情况:以不消亡为条件,以及增加移民。在这两种情况下,我们都证明了该过程在分布上无需归一化即可收敛到非退化的复合泊松极限规律。证明依赖于 Kersting(2020 年)提出的形状函数技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信