Davood Pirayesh Neghab, Mucahit Cevik, M. I. M. Wahab, Ayse Basar
{"title":"Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using Interpretive Machine Learning","authors":"Davood Pirayesh Neghab, Mucahit Cevik, M. I. M. Wahab, Ayse Basar","doi":"10.1007/s10614-024-10617-1","DOIUrl":null,"url":null,"abstract":"<p>The complexity and ambiguity of financial and economic systems, along with frequent changes in the economic environment, have made it difficult to make precise predictions that are supported by theory-consistent explanations. Interpreting the prediction models used for forecasting important macroeconomic indicators is highly valuable for understanding relations among different factors, increasing trust towards the prediction models, and making predictions more actionable. In this study, we develop a fundamental-based model for the Canadian–U.S. dollar exchange rate within an interpretative framework. We propose a comprehensive approach using machine learning to predict the exchange rate and employ interpretability methods to accurately analyze the relationships among macroeconomic variables. Moreover, we implement an ablation study based on the output of the interpretations to improve the predictive accuracy of the models. Our empirical results show that crude oil, as Canada’s main commodity export, is the leading factor that determines the exchange rate dynamics with time-varying effects. The changes in the sign and magnitude of the contributions of crude oil to the exchange rate are consistent with significant events in the commodity and energy markets and the evolution of the crude oil trend in Canada. Gold and the TSX stock index are found to be the second and third most important variables that influence the exchange rate. Accordingly, this analysis provides trustworthy and practical insights for policymakers and economists and accurate knowledge about the predictive model’s decisions, which are supported by theoretical considerations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"8 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10617-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity and ambiguity of financial and economic systems, along with frequent changes in the economic environment, have made it difficult to make precise predictions that are supported by theory-consistent explanations. Interpreting the prediction models used for forecasting important macroeconomic indicators is highly valuable for understanding relations among different factors, increasing trust towards the prediction models, and making predictions more actionable. In this study, we develop a fundamental-based model for the Canadian–U.S. dollar exchange rate within an interpretative framework. We propose a comprehensive approach using machine learning to predict the exchange rate and employ interpretability methods to accurately analyze the relationships among macroeconomic variables. Moreover, we implement an ablation study based on the output of the interpretations to improve the predictive accuracy of the models. Our empirical results show that crude oil, as Canada’s main commodity export, is the leading factor that determines the exchange rate dynamics with time-varying effects. The changes in the sign and magnitude of the contributions of crude oil to the exchange rate are consistent with significant events in the commodity and energy markets and the evolution of the crude oil trend in Canada. Gold and the TSX stock index are found to be the second and third most important variables that influence the exchange rate. Accordingly, this analysis provides trustworthy and practical insights for policymakers and economists and accurate knowledge about the predictive model’s decisions, which are supported by theoretical considerations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.