Copper Price Forecasting Based on Improved Least Squares Support Vector Machine with Butterfly Optimization Algorithm

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jialu Ling, Ziyu Zhong, Helin Wei
{"title":"Copper Price Forecasting Based on Improved Least Squares Support Vector Machine with Butterfly Optimization Algorithm","authors":"Jialu Ling, Ziyu Zhong, Helin Wei","doi":"10.1007/s10614-024-10609-1","DOIUrl":null,"url":null,"abstract":"<p>Copper prices are commonly used as indicators of economic development due to the increased operational risks of copper trading companies caused by their fluctuations and the effect on the government's ability to formulate market regulation policies. However, due to the high volatility of copper prices and resulting database discrepancies, traditional models exhibit lower accuracy and limited applicability. In this study, an improved hybrid prediction model based on the Butterfly Optimization Algorithm (BOA) and the Least Squares Support Vector Machine (LSSVM) is proposed. Firstly, the BOA is introduced to optimize the hyperparameters of the LSSVM. Then principal component analysis (PCA) is applied to data preprocessing, and the correlations of principal components are used to analyze and select model variables. To compare the forecasting accuracy and generalization ability based on the dataset of copper prices, some models are applied to establish multiple copper-price forecast cases, short-term, medium-term, and long-term. The results indicate that the PCA-BOA-LSSVM model demonstrates the most significant improvement, particularly in long-term forecasting cases. The highest optimization rate for RMSE reach 55.61%. The evaluation metrics of RMSE and MAPE for each case do not exceed 0.5 and 0.1, respectively, while R<sup>2</sup> remains above 0.6. In conclusion, this study provides a high-precision model for short-term, medium-term, and long-term forecasts of copper prices and provides reliable theoretical support for government policy adjustment and market investment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"1 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10609-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper prices are commonly used as indicators of economic development due to the increased operational risks of copper trading companies caused by their fluctuations and the effect on the government's ability to formulate market regulation policies. However, due to the high volatility of copper prices and resulting database discrepancies, traditional models exhibit lower accuracy and limited applicability. In this study, an improved hybrid prediction model based on the Butterfly Optimization Algorithm (BOA) and the Least Squares Support Vector Machine (LSSVM) is proposed. Firstly, the BOA is introduced to optimize the hyperparameters of the LSSVM. Then principal component analysis (PCA) is applied to data preprocessing, and the correlations of principal components are used to analyze and select model variables. To compare the forecasting accuracy and generalization ability based on the dataset of copper prices, some models are applied to establish multiple copper-price forecast cases, short-term, medium-term, and long-term. The results indicate that the PCA-BOA-LSSVM model demonstrates the most significant improvement, particularly in long-term forecasting cases. The highest optimization rate for RMSE reach 55.61%. The evaluation metrics of RMSE and MAPE for each case do not exceed 0.5 and 0.1, respectively, while R2 remains above 0.6. In conclusion, this study provides a high-precision model for short-term, medium-term, and long-term forecasts of copper prices and provides reliable theoretical support for government policy adjustment and market investment.

Abstract Image

基于改进型最小二乘支持向量机与蝴蝶优化算法的铜价预测
由于铜价波动会增加铜贸易公司的经营风险,并影响政府制定市场监管政策的能力,因此铜价通常被用作经济发展指标。然而,由于铜价波动较大,导致数据库差异,传统模型表现出较低的准确性和有限的适用性。本研究提出了一种基于蝴蝶优化算法(BOA)和最小二乘支持向量机(LSSVM)的改进型混合预测模型。首先,引入 BOA 来优化 LSSVM 的超参数。然后应用主成分分析(PCA)进行数据预处理,并利用主成分的相关性分析和选择模型变量。为了比较基于铜价数据集的预测精度和泛化能力,应用一些模型建立了短期、中期和长期多种铜价预测案例。结果表明,PCA-BOA-LSSVM 模型的改进最为显著,尤其是在长期预测案例中。RMSE 的优化率最高,达到 55.61%。每个案例的 RMSE 和 MAPE 的评价指标分别不超过 0.5 和 0.1,而 R2 保持在 0.6 以上。总之,本研究为铜价的短期、中期和长期预测提供了高精度模型,为政府政策调整和市场投资提供了可靠的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信