Random Green’s Function Method for Large-Scale Electronic Structure Calculation

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Mingfa Tang, Chang Liu, Aixia Zhang, Qingyun Zhang, Jiayu Zhai, Shengjun Yuan, Youqi Ke
{"title":"Random Green’s Function Method for Large-Scale Electronic Structure Calculation","authors":"Mingfa Tang, Chang Liu, Aixia Zhang, Qingyun Zhang, Jiayu Zhai, Shengjun Yuan, Youqi Ke","doi":"10.1088/0256-307x/41/5/053102","DOIUrl":null,"url":null,"abstract":"We report a linear-scaling random Green’s function (rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H<sub>2</sub>O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H<sub>2</sub>O clusters at <italic toggle=\"yes\">T</italic> = 0 K can reach an error of ∼ 1 meV per H<sub>2</sub>O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/5/053102","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report a linear-scaling random Green’s function (rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H2O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H2O clusters at T = 0 K can reach an error of ∼ 1 meV per H2O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
用于大规模电子结构计算的随机格林函数法
我们报告了一种用于大规模电子结构计算的线性缩放随机格林函数(rGF)方法。在这种方法中,rGF 定义在一组随机态上,并通过投影到 Krylov 子空间进行高效计算。利用 rGF 方法,可以直接得到费米-狄拉克算子,避免了费米-狄拉克函数的多项式展开。为了证明其适用性,我们用密度函数紧约束方法实现了 rGF 方法。结果表明,对于零温下具有不同间隙的材料(包括 H2O 和硅簇),克雷洛夫子空间可以保持在较小的尺寸。我们通过简单的放缩技术发现,与确定性计算相比,rGF 自洽计算 H2O 团簇在 T = 0 K 时每个 H2O 分子的总能量误差可达 ∼ 1 meV。rGF方法为大规模电子结构模拟提供了一种有效的随机方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信