Set Convergences via bornology

Yogesh Agarwal, Varun Jindal
{"title":"Set Convergences via bornology","authors":"Yogesh Agarwal, Varun Jindal","doi":"arxiv-2405.07705","DOIUrl":null,"url":null,"abstract":"This paper examines the equivalence between various set convergences, as\nstudied in [7, 13, 22], induced by an arbitrary bornology $\\mathcal{S}$ on a\nmetric space $(X,d)$. Specifically, it focuses on the upper parts of the\nfollowing set convergences: convergence deduced through uniform convergence of\ndistance functionals on $\\mathcal{S}$ ($\\tau_{\\mathcal{S},d}$-convergence);\nconvergence with respect to gap functionals determined by $\\mathcal{S}$\n($G_{\\mathcal{S},d}$-convergence); and bornological convergence\n($\\mathcal{S}$-convergence). In particular, we give necessary and sufficient\nconditions on the structure of the bornology $\\mathcal{S}$ for the coincidence\nof $\\tau_{\\mathcal{S},d}^+$-convergence with\n$\\mathsf{G}_{\\mathcal{S},d}^+$-convergence, as well as\n$\\tau_{\\mathcal{S},d}^+$-convergence with $\\mathcal{S}^+$-convergence. A\ncharacterization for the equivalence of $\\tau_{\\mathcal{S},d}^+$-convergence\nand $\\mathcal{S}^+$-convergence, in terms of certain convergence of nets, has\nalso been given earlier by Beer, Naimpally, and Rodriguez-Lopez in [13]. To\nfacilitate our study, we first devise new characterizations for\n$\\tau_{\\mathcal{S},d}^+$-convergence and $\\mathcal{S}^+$-convergence, which we\ncall their miss-type characterizations.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.07705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the equivalence between various set convergences, as studied in [7, 13, 22], induced by an arbitrary bornology $\mathcal{S}$ on a metric space $(X,d)$. Specifically, it focuses on the upper parts of the following set convergences: convergence deduced through uniform convergence of distance functionals on $\mathcal{S}$ ($\tau_{\mathcal{S},d}$-convergence); convergence with respect to gap functionals determined by $\mathcal{S}$ ($G_{\mathcal{S},d}$-convergence); and bornological convergence ($\mathcal{S}$-convergence). In particular, we give necessary and sufficient conditions on the structure of the bornology $\mathcal{S}$ for the coincidence of $\tau_{\mathcal{S},d}^+$-convergence with $\mathsf{G}_{\mathcal{S},d}^+$-convergence, as well as $\tau_{\mathcal{S},d}^+$-convergence with $\mathcal{S}^+$-convergence. A characterization for the equivalence of $\tau_{\mathcal{S},d}^+$-convergence and $\mathcal{S}^+$-convergence, in terms of certain convergence of nets, has also been given earlier by Beer, Naimpally, and Rodriguez-Lopez in [13]. To facilitate our study, we first devise new characterizations for $\tau_{\mathcal{S},d}^+$-convergence and $\mathcal{S}^+$-convergence, which we call their miss-type characterizations.
通过 "出生学 "进行集合会聚
本文研究了[7, 13, 22]中所研究的,由etric空间 $(X,d)$ 上的任意出生论 $\mathcal{S}$ 所引起的各种集合收敛之间的等价性。具体地说,它侧重于以下集合收敛的上部:通过$\mathcal{S}$上的距离函数的均匀收敛推导出的收敛($\tau_{\mathcal{S},d}$-收敛);由$\mathcal{S}$决定的关于间隙函数的收敛($G_{\mathcal{S},d}$-收敛);以及生理学收敛($\mathcal{S}$-收敛)。特别是,我们给出了$\mathcal{S}$出生论结构的必要条件和充分条件,以实现$\tau_{mathcal{S},d}^+$收敛与$\mathsf{G}_{mathcal{S},d}^+$收敛的重合,以及$\tau_{mathcal{S},d}^+$收敛与$\mathcal{S}^+$收敛的重合。关于 $\tau_{mathcal{S},d}^+$-convergence 与 $\mathcal{S}^+$-convergence 的等价性,Beer、Naimpally 和 Rodriguez-Lopez 早先在[13]中也从网的某些收敛性角度给出了描述。为了方便我们的研究,我们首先为$\tau_{\mathcal{S},d}^+$-收敛和$\mathcal{S}^+$-收敛设计了新的特征,我们称之为它们的误型特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信