Review on the Preparation of Cryolite from Industry Waste Containing Fluorine

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Xiaomeng Cao, Jianping Peng, Wenxiong Dong, Yifei Li, Yaowu Wang, Yuezhong Di
{"title":"Review on the Preparation of Cryolite from Industry Waste Containing Fluorine","authors":"Xiaomeng Cao, Jianping Peng, Wenxiong Dong, Yifei Li, Yaowu Wang, Yuezhong Di","doi":"10.1007/s40831-024-00835-0","DOIUrl":null,"url":null,"abstract":"<p>Rapid development of the fluorine industry has led to mass production of fluorine-containing waste, and direct discharge of this waste will cause serious environmental pollution of water, atmosphere, soil, and so on. Recycling and treatment of fluorine-containing waste are required for environmental protection and to utilize the fluorine resources. Because of decreases in fluorite reserves and inefficient fluorine resource recovery, cryolite has become a potential resource for fluorine recovery. This paper summarizes research on the preparation of cryolite from fluorine-containing substances produced in various industries, mechanisms of contamination under different conditions, and commonly used methods for controlling the product particle size. The results indicate that cryolite prepared in acidic or weakly alkaline solutions with a fluorine–aluminum molar ratio of 5.4–6.6 has high purity. The particle size of the cryolite increases with the addition of a seed during precipitation. This review provides insight for future production of cryolite with regard to purity problems and particle size control.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"21 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00835-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid development of the fluorine industry has led to mass production of fluorine-containing waste, and direct discharge of this waste will cause serious environmental pollution of water, atmosphere, soil, and so on. Recycling and treatment of fluorine-containing waste are required for environmental protection and to utilize the fluorine resources. Because of decreases in fluorite reserves and inefficient fluorine resource recovery, cryolite has become a potential resource for fluorine recovery. This paper summarizes research on the preparation of cryolite from fluorine-containing substances produced in various industries, mechanisms of contamination under different conditions, and commonly used methods for controlling the product particle size. The results indicate that cryolite prepared in acidic or weakly alkaline solutions with a fluorine–aluminum molar ratio of 5.4–6.6 has high purity. The particle size of the cryolite increases with the addition of a seed during precipitation. This review provides insight for future production of cryolite with regard to purity problems and particle size control.

Graphical Abstract

Abstract Image

利用含氟工业废料制备冰晶石综述
氟工业的快速发展导致含氟废物的大量产生,直接排放这些废物会对水、大气、土壤等造成严重的环境污染。为了保护环境和利用氟资源,需要对含氟废物进行回收和处理。由于萤石储量的减少和氟资源回收效率的低下,冰晶石已成为一种潜在的氟回收资源。本文总结了利用各行业产生的含氟物质制备冰晶石的研究、不同条件下的污染机理以及控制产品粒度的常用方法。研究结果表明,在氟铝摩尔比为 5.4-6.6 的酸性或弱碱性溶液中制备的冰晶石纯度较高。在沉淀过程中加入种子后,冰晶石的粒度会增大。本综述为今后生产冰晶石的纯度问题和粒度控制提供了启示。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信