Enhanced Quantum Control of Individual Ultracold Molecules Using Optical Tweezer Arrays

Daniel K. Ruttley, Alexander Guttridge, Tom R. Hepworth, Simon L. Cornish
{"title":"Enhanced Quantum Control of Individual Ultracold Molecules Using Optical Tweezer Arrays","authors":"Daniel K. Ruttley, Alexander Guttridge, Tom R. Hepworth, Simon L. Cornish","doi":"10.1103/prxquantum.5.020333","DOIUrl":null,"url":null,"abstract":"Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions for applications in quantum science. In this paper, we develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers. Starting with arrays of up to eight Rb and eight Cs atoms, we assemble arrays of RbCs molecules in their rovibrational and hyperfine ground state with an overall efficiency of 48(2)%. We demonstrate global microwave control of multiple rotational states of the molecules and use an auxiliary tweezer array to implement site-resolved addressing and state control. We show how the rotational state of the molecule can be mapped onto the position of Rb atoms and use this capability to readout multiple rotational states in a single experimental run. Further, using a scheme for the midsequence detection of molecule formation errors, we perform rearrangement of assembled molecules to prepare small defect-free arrays. Finally, we discuss a feasible route to scaling to larger arrays of molecules.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions for applications in quantum science. In this paper, we develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers. Starting with arrays of up to eight Rb and eight Cs atoms, we assemble arrays of RbCs molecules in their rovibrational and hyperfine ground state with an overall efficiency of 48(2)%. We demonstrate global microwave control of multiple rotational states of the molecules and use an auxiliary tweezer array to implement site-resolved addressing and state control. We show how the rotational state of the molecule can be mapped onto the position of Rb atoms and use this capability to readout multiple rotational states in a single experimental run. Further, using a scheme for the midsequence detection of molecule formation errors, we perform rearrangement of assembled molecules to prepare small defect-free arrays. Finally, we discuss a feasible route to scaling to larger arrays of molecules.

Abstract Image

利用光镊阵列增强对单个超冷分子的量子控制
控制单个分子的量子态对于利用其丰富的内部结构和偶极相互作用在量子科学中的应用至关重要。在本文中,我们开发了一个技术工具箱,用于控制和读出光学镊子阵列中单独捕获的极性分子。从最多八个铷原子和八个铯原子的阵列开始,我们在铷铯分子的振荡态和超频基态下组装了铷铯分子阵列,总效率达到 48(2)%。我们展示了分子多种旋转态的全局微波控制,并使用辅助镊子阵列实现了位点分辨寻址和状态控制。我们展示了如何将分子的旋转状态映射到铷原子的位置上,并利用这种能力在一次实验运行中读出多个旋转状态。此外,我们还利用中序检测分子形成错误的方案,对组装好的分子进行重新排列,以制备无缺陷的小阵列。最后,我们讨论了扩展到更大分子阵列的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信