{"title":"Feasibility and performance enhancement of collaborative control of unmanned ground vehicles via virtual reality","authors":"Ziming Li, Yiming Luo, Jialin Wang, Yushan Pan, Lingyun Yu, Hai-Ning Liang","doi":"10.1007/s00779-024-01799-4","DOIUrl":null,"url":null,"abstract":"<p>To support people working in dangerous industries, virtual reality (VR) can ensure operators manipulate standardized tasks and work collaboratively to deal with potential risks. Surprisingly, limited research has paid attention to the cognitive load of operators in their collaborative tasks, especially via VR interfaces. Once task demands become complex, many researchers focus on optimizing the design of the interaction interfaces to reduce the cognitive load on the operator. In this paper, we propose a new collaborative VR system with edge enhancement to support two teleoperators working in the VR environment to remote control an uncrewed ground vehicle. We use a compared experiment to evaluate the collaborative VR systems, focusing on the time spent on tasks and the total number of operations. Our results show that the total number of processes and the cognitive load during operations were significantly lower in the two-person group than in the single-person group. Our study sheds light on designing VR systems to support collaborative work with respect to the flow of work of teleoperators instead of simply optimizing the design outcomes.</p>","PeriodicalId":54628,"journal":{"name":"Personal and Ubiquitous Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personal and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00779-024-01799-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
To support people working in dangerous industries, virtual reality (VR) can ensure operators manipulate standardized tasks and work collaboratively to deal with potential risks. Surprisingly, limited research has paid attention to the cognitive load of operators in their collaborative tasks, especially via VR interfaces. Once task demands become complex, many researchers focus on optimizing the design of the interaction interfaces to reduce the cognitive load on the operator. In this paper, we propose a new collaborative VR system with edge enhancement to support two teleoperators working in the VR environment to remote control an uncrewed ground vehicle. We use a compared experiment to evaluate the collaborative VR systems, focusing on the time spent on tasks and the total number of operations. Our results show that the total number of processes and the cognitive load during operations were significantly lower in the two-person group than in the single-person group. Our study sheds light on designing VR systems to support collaborative work with respect to the flow of work of teleoperators instead of simply optimizing the design outcomes.
期刊介绍:
Personal and Ubiquitous Computing publishes peer-reviewed multidisciplinary research on personal and ubiquitous technologies and services. The journal provides a global perspective on new developments in research in areas including user experience for advanced digital technologies, the Internet of Things, big data, social technologies and mobile and wearable devices.