Tamires Da Silva Martins, José R. Magalhães Filho, Larissa Prado Cruz, Daniela F. S. P. Machado, Norma M. Erismann, Rose M. A. Gondim-Tomaz, Paulo E. R. Marchiori, André L. B. O. Silva, Eduardo Caruso Machado, Rafael Vasconcelos Ribeiro
{"title":"Physiological and biochemical processes underlying the differential sucrose yield and biomass production in sugarcane varieties","authors":"Tamires Da Silva Martins, José R. Magalhães Filho, Larissa Prado Cruz, Daniela F. S. P. Machado, Norma M. Erismann, Rose M. A. Gondim-Tomaz, Paulo E. R. Marchiori, André L. B. O. Silva, Eduardo Caruso Machado, Rafael Vasconcelos Ribeiro","doi":"10.1017/s0014479724000061","DOIUrl":null,"url":null,"abstract":"<p>Sucrose yield in sugarcane is a complex process regulated by both environmental and endogenous factors. However, the metabolic balance driving vegetative growth and sucrose accumulation remains poorly understood. Herein, we carried out a comprehensive assessment of carbohydrate dynamics throughout the crop cycle in two sugarcane varieties varying in biomass production, evaluating the carbon metabolism in both leaves and stalks. Our data revealed that the decline in photosynthetic rates during sugarcane maturation is associated not only to accumulation of sugars in leaves but also due to stomatal and non-stomatal limitations. We found that metabolic processes in leaves and stalks were intrinsically linked. While IACSP94-2094 had higher stalk sucrose concentration than IACSP95-5000, this latter produced more biomass. Compared to IACSP95-5000, IACSP94-2094 showed higher sucrose phosphate synthase (SPS) activity in leaves and stalks, along with lower soluble acid invertase (SAI) activity in leaves during the maximum growth stage. Interestingly, IACSP94-2094 also exhibited higher stalk SPS activity and lower stalk SAI activity than IACSP95-5000 during maturation. High biomass production by IACSP95-5000 was associated with higher sucrose synthase (SuSy) and SAI activity in leaves and higher SuSy and soluble neutral invertase (SNI) activity in stalks when compared to IACSP94-2094 during the maximum growth. Despite the contrasting strategies, both varieties displayed similar total sucrose yield, a balance between sucrose concentration and biomass production. This phenomenon implies the presence of a compensatory mechanism in sugarcane, with high biomass production compensating low sucrose accumulation and vice versa.</p>","PeriodicalId":12245,"journal":{"name":"Experimental Agriculture","volume":"41 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/s0014479724000061","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Sucrose yield in sugarcane is a complex process regulated by both environmental and endogenous factors. However, the metabolic balance driving vegetative growth and sucrose accumulation remains poorly understood. Herein, we carried out a comprehensive assessment of carbohydrate dynamics throughout the crop cycle in two sugarcane varieties varying in biomass production, evaluating the carbon metabolism in both leaves and stalks. Our data revealed that the decline in photosynthetic rates during sugarcane maturation is associated not only to accumulation of sugars in leaves but also due to stomatal and non-stomatal limitations. We found that metabolic processes in leaves and stalks were intrinsically linked. While IACSP94-2094 had higher stalk sucrose concentration than IACSP95-5000, this latter produced more biomass. Compared to IACSP95-5000, IACSP94-2094 showed higher sucrose phosphate synthase (SPS) activity in leaves and stalks, along with lower soluble acid invertase (SAI) activity in leaves during the maximum growth stage. Interestingly, IACSP94-2094 also exhibited higher stalk SPS activity and lower stalk SAI activity than IACSP95-5000 during maturation. High biomass production by IACSP95-5000 was associated with higher sucrose synthase (SuSy) and SAI activity in leaves and higher SuSy and soluble neutral invertase (SNI) activity in stalks when compared to IACSP94-2094 during the maximum growth. Despite the contrasting strategies, both varieties displayed similar total sucrose yield, a balance between sucrose concentration and biomass production. This phenomenon implies the presence of a compensatory mechanism in sugarcane, with high biomass production compensating low sucrose accumulation and vice versa.
期刊介绍:
With a focus on the tropical and sub-tropical regions of the world, Experimental Agriculture publishes the results of original research on field, plantation and herbage crops grown for food or feed, or for industrial purposes, and on farming systems, including livestock and people. It reports experimental work designed to explain how crops respond to the environment in biological and physical terms, and on the social and economic issues that may influence the uptake of the results of research by policy makers and farmers, including the role of institutions and partnerships in delivering impact. The journal also publishes accounts and critical discussions of new quantitative and qualitative methods in agricultural and ecosystems research, and of contemporary issues arising in countries where agricultural production needs to develop rapidly. There is a regular book review section and occasional, often invited, reviews of research.