Instanton sheaves on Fano threefolds

Pub Date : 2024-05-14 DOI:10.1007/s00229-024-01559-x
Gaia Comaschi, Marcos Jardim
{"title":"Instanton sheaves on Fano threefolds","authors":"Gaia Comaschi, Marcos Jardim","doi":"10.1007/s00229-024-01559-x","DOIUrl":null,"url":null,"abstract":"<p>Generalizing the definitions originally presented by Kuznetsov and Faenzi, we study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0 instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric threefold <i>X</i> and show that the full moduli space of rank 2 semistable sheaves on <i>X</i> with Chern classes <span>\\((c_1,c_2,c_3)=(-\\,1,2,0)\\)</span> is connected and contains, besides the instanton component, just one other irreducible component which is also fully described.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01559-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing the definitions originally presented by Kuznetsov and Faenzi, we study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0 instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric threefold X and show that the full moduli space of rank 2 semistable sheaves on X with Chern classes \((c_1,c_2,c_3)=(-\,1,2,0)\) is connected and contains, besides the instanton component, just one other irreducible component which is also fully described.

Abstract Image

分享
查看原文
法诺三折上的瞬子切
根据库兹涅佐夫(Kuznetsov)和法恩兹(Faenzi)最初提出的定义,我们研究了法诺三折上任意阶的(可能是非局部自由的)瞬子剪。我们对秩 1 的瞬子剪辑进行了分类,并描述了所有结构剪辑为秩 0 瞬子剪辑的曲线。此外,我们还证明了每个阶 2 瞬子剪切都是沿阶 0 瞬子剪切的局部自由瞬子剪切的基本变换。为了使论文更加完整,我们描述了四元三折X上电荷为2的秩2瞬子剪子的模空间,并证明了X上具有Chern类\((c_1,c_2,c_3)=(-\,1,2,0)\的秩2半稳态剪子的完整模空间是连通的,并且除了瞬子分量之外,只包含另一个不可还原分量,这一点也得到了完整的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信