On the Relaxation of Gauss’s Capillarity Theory Under Spanning Conditions

Michael Novack
{"title":"On the Relaxation of Gauss’s Capillarity Theory Under Spanning Conditions","authors":"Michael Novack","doi":"10.1007/s12220-024-01675-w","DOIUrl":null,"url":null,"abstract":"<p>We study a variational model for soap films in which the films are represented by sets with fixed small volume rather than surfaces. In this problem, a minimizing sequence of completely “wet\" films, or sets of finite perimeter spanning a wire frame, may converge to a film containing both wet regions of positive volume and collapsed (dry) surfaces. When collapsing occurs, these limiting objects lie outside the original minimization class and instead are admissible for a relaxed problem. Here we show that the relaxation and the original formulation are equivalent by approximating the collapsed films in the relaxed class by wet films in the original class.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01675-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a variational model for soap films in which the films are represented by sets with fixed small volume rather than surfaces. In this problem, a minimizing sequence of completely “wet" films, or sets of finite perimeter spanning a wire frame, may converge to a film containing both wet regions of positive volume and collapsed (dry) surfaces. When collapsing occurs, these limiting objects lie outside the original minimization class and instead are admissible for a relaxed problem. Here we show that the relaxation and the original formulation are equivalent by approximating the collapsed films in the relaxed class by wet films in the original class.

Abstract Image

论跨度条件下高斯毛细管理论的松弛
我们研究了肥皂膜的变分模型,在该模型中,薄膜由具有固定小体积的集合而非表面表示。在这个问题中,完全 "湿 "薄膜或跨越线框的有限周长集合的最小化序列可能会收敛到同时包含正体积湿区域和塌陷(干)表面的薄膜。当塌陷发生时,这些极限对象就会超出原来的最小化类别,而成为松弛问题的可接受对象。在这里,我们通过用原始类别中的湿膜来近似松弛类别中的塌陷薄膜,来证明松弛和原始公式是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信