Nearly Time-Optimal Kernelization Algorithms for the Line-Cover Problem with Big Data

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jianer Chen, Qin Huang, Iyad Kanj, Ge Xia
{"title":"Nearly Time-Optimal Kernelization Algorithms for the Line-Cover Problem with Big Data","authors":"Jianer Chen,&nbsp;Qin Huang,&nbsp;Iyad Kanj,&nbsp;Ge Xia","doi":"10.1007/s00453-024-01231-6","DOIUrl":null,"url":null,"abstract":"<div><p>Based on well-known complexity theory conjectures, any polynomial-time kernelization algorithm for the NP-hard <span>Line-</span><span>Cover</span> problem produces a kernel of size <span>\\(\\Omega (k^2)\\)</span>, where <i>k</i> is the size of the sought line cover. Motivated by the current research in massive data processing, we study the existence of kernelization algorithms with limited space and time complexity for <span>Line-</span><span>Cover</span>. We prove that every kernelization algorithm for <span>Line-Cover</span> takes time <span>\\(\\Omega (n \\log k + k^2 \\log k)\\)</span>, and present a randomized kernelization algorithm for <span>Line-</span><span>Cover</span> that produces a kernel of size bounded by <span>\\(k^2\\)</span>, and runs in time <span>\\({\\mathcal {O}}(n \\log k + k^2 (\\log k \\log \\log k)^2)\\)</span> and space <span>\\({\\mathcal {O}}(k^2\\log ^{2} k)\\)</span>. Our techniques are also useful for developing deterministic kernelization algorithms for <span>Line-</span><span>Cover</span> with limited space and improved running time, and for developing streaming kernelization algorithms for <span>Line-</span><span>Cover</span> with near-optimal update-time.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 8","pages":"2448 - 2478"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01231-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Based on well-known complexity theory conjectures, any polynomial-time kernelization algorithm for the NP-hard Line-Cover problem produces a kernel of size \(\Omega (k^2)\), where k is the size of the sought line cover. Motivated by the current research in massive data processing, we study the existence of kernelization algorithms with limited space and time complexity for Line-Cover. We prove that every kernelization algorithm for Line-Cover takes time \(\Omega (n \log k + k^2 \log k)\), and present a randomized kernelization algorithm for Line-Cover that produces a kernel of size bounded by \(k^2\), and runs in time \({\mathcal {O}}(n \log k + k^2 (\log k \log \log k)^2)\) and space \({\mathcal {O}}(k^2\log ^{2} k)\). Our techniques are also useful for developing deterministic kernelization algorithms for Line-Cover with limited space and improved running time, and for developing streaming kernelization algorithms for Line-Cover with near-optimal update-time.

Abstract Image

Abstract Image

大数据中线路覆盖问题的近乎时间最优核化算法
基于众所周知的复杂性理论猜想,任何针对 NP 难的线覆盖(Line-Cover)问题的多项式时间内核化算法都会产生一个大小为 \(\Omega (k^2)\) 的内核,其中 k 是所求线覆盖的大小。受当前海量数据处理研究的启发,我们研究了针对 Line-Cover 问题是否存在空间和时间复杂度有限的内核化算法。我们证明了Line-Cover的每个内核化算法都需要花费时间\(\Omega (n \log k + k^2 \log k)\),并提出了一种Line-Cover的随机内核化算法,它产生的内核大小以\(k^2\)为界、并且运行时间({\mathcal {O}}(n \log k + k^2 (\log k \log \log k)^2))和空间({\mathcal {O}}(k^2\log ^{2} k))。我们的技术还有助于为 Line-Cover 开发空间有限、运行时间更短的确定性内核化算法,以及为 Line-Cover 开发更新时间接近最优的流式内核化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信