{"title":"Contact foliations and generalised Weinstein conjectures","authors":"Douglas Finamore","doi":"10.1007/s10455-024-09957-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider contact foliations: objects which generalise to higher dimensions the flow of the Reeb vector field on contact manifolds. We list several properties of such foliations and propose two conjectures about the topological types of their leaves, both of which coincide with the classical Weinstein conjecture in the case of contact flows. We give positive partial results for our conjectures in particular cases—when the holonomy of the contact foliation preserves a Riemannian metric, for instance—extending already established results in the field of Contact Dynamics.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09957-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider contact foliations: objects which generalise to higher dimensions the flow of the Reeb vector field on contact manifolds. We list several properties of such foliations and propose two conjectures about the topological types of their leaves, both of which coincide with the classical Weinstein conjecture in the case of contact flows. We give positive partial results for our conjectures in particular cases—when the holonomy of the contact foliation preserves a Riemannian metric, for instance—extending already established results in the field of Contact Dynamics.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.