On a problem of E. Meckes for the unitary eigenvalue process on an arc

IF 1.4 3区 数学 Q1 MATHEMATICS
L. Kryvonos, E. B. Saff
{"title":"On a problem of E. Meckes for the unitary eigenvalue process on an arc","authors":"L. Kryvonos,&nbsp;E. B. Saff","doi":"10.1007/s13324-024-00919-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random <span>\\(n \\times n\\)</span> matrix. The eigenvalues <span>\\(p_{j}\\)</span> of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function <span>\\(|G(x,n)|:=\\#\\{j:p_j&gt;Ce^{-x n}\\}\\)</span>, (<span>\\(C&gt;0\\)</span> here is a fixed constant) and establish the asymptotic behavior of its average over the interval <span>\\(x \\in (\\lambda -\\varepsilon , \\lambda +\\varepsilon )\\)</span> by relating the function |<i>G</i>(<i>x</i>, <i>n</i>)| to the solution <i>J</i>(<i>q</i>) of the following energy problem on the unit circle <span>\\(S^{1}\\)</span>, which is of independent interest. Namely, for given <span>\\(\\theta \\)</span>, <span>\\(0&lt;\\theta &lt; 2 \\pi \\)</span>, and given <i>q</i>, <span>\\(0&lt;q&lt;1\\)</span>, we determine the function <span>\\(J(q) =\\inf \\{I(\\mu ): \\mu \\in \\mathcal {P}(S^{1}), \\mu (A_{\\theta }) = q\\}\\)</span>, where <span>\\(I(\\mu ):= \\int \\!\\int \\log \\frac{1}{|z - \\zeta |} d\\mu (z) d\\mu (\\zeta )\\)</span> is the logarithmic energy of a probability measure <span>\\(\\mu \\)</span> supported on the unit circle and <span>\\(A_{\\theta }\\)</span> is the arc from <span>\\(e^{-i \\theta /2}\\)</span> to <span>\\(e^{i \\theta /2}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00919-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random \(n \times n\) matrix. The eigenvalues \(p_{j}\) of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function \(|G(x,n)|:=\#\{j:p_j>Ce^{-x n}\}\), (\(C>0\) here is a fixed constant) and establish the asymptotic behavior of its average over the interval \(x \in (\lambda -\varepsilon , \lambda +\varepsilon )\) by relating the function |G(xn)| to the solution J(q) of the following energy problem on the unit circle \(S^{1}\), which is of independent interest. Namely, for given \(\theta \), \(0<\theta < 2 \pi \), and given q, \(0<q<1\), we determine the function \(J(q) =\inf \{I(\mu ): \mu \in \mathcal {P}(S^{1}), \mu (A_{\theta }) = q\}\), where \(I(\mu ):= \int \!\int \log \frac{1}{|z - \zeta |} d\mu (z) d\mu (\zeta )\) is the logarithmic energy of a probability measure \(\mu \) supported on the unit circle and \(A_{\theta }\) is the arc from \(e^{-i \theta /2}\) to \(e^{i \theta /2}\).

Abstract Image

关于 E. Meckes 提出的弧上单元特征值过程问题
我们研究了 E. Meckes 最初提出的关于随机 \(n \times n\) 矩阵的单元特征值过程的核特征值的渐近线问题。核的特征值 \(p_{j}\)又与离散的球面波函数相关联。我们考虑特征值计数函数 \(|G(x,n)|:=\#\{j:p_j>Ce^{-x n}\}\), (\(C>;这里是一个固定常数),并通过将函数 |G(x, n)|与下面单位圆 \(S^{1}\)上能量问题的解 J(q)相关联,建立其在区间 \(x \in (\lambda -\varepsilon , \lambda +\varepsilon )\) 上的平均值的渐近行为。也就是说,对于给定的\(theta \),\(0<theta < 2 \pi \),以及给定的q,\(0<q<1\),我们确定函数 \(J(q) =\inf \{I(\mu ):\mu \in \mathcal {P}(S^{1}), \mu (A_{\theta }) = q\}\), where \(I(\mu ):= \int \!\是支持在单位圆上的概率度量\(\mu \)的对数能量,而\(A_{theta }\) 是从\(e^{-i \theta /2}\)到\(e^{i \theta /2}\)的弧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信