{"title":"On a problem of E. Meckes for the unitary eigenvalue process on an arc","authors":"L. Kryvonos, E. B. Saff","doi":"10.1007/s13324-024-00919-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random <span>\\(n \\times n\\)</span> matrix. The eigenvalues <span>\\(p_{j}\\)</span> of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function <span>\\(|G(x,n)|:=\\#\\{j:p_j>Ce^{-x n}\\}\\)</span>, (<span>\\(C>0\\)</span> here is a fixed constant) and establish the asymptotic behavior of its average over the interval <span>\\(x \\in (\\lambda -\\varepsilon , \\lambda +\\varepsilon )\\)</span> by relating the function |<i>G</i>(<i>x</i>, <i>n</i>)| to the solution <i>J</i>(<i>q</i>) of the following energy problem on the unit circle <span>\\(S^{1}\\)</span>, which is of independent interest. Namely, for given <span>\\(\\theta \\)</span>, <span>\\(0<\\theta < 2 \\pi \\)</span>, and given <i>q</i>, <span>\\(0<q<1\\)</span>, we determine the function <span>\\(J(q) =\\inf \\{I(\\mu ): \\mu \\in \\mathcal {P}(S^{1}), \\mu (A_{\\theta }) = q\\}\\)</span>, where <span>\\(I(\\mu ):= \\int \\!\\int \\log \\frac{1}{|z - \\zeta |} d\\mu (z) d\\mu (\\zeta )\\)</span> is the logarithmic energy of a probability measure <span>\\(\\mu \\)</span> supported on the unit circle and <span>\\(A_{\\theta }\\)</span> is the arc from <span>\\(e^{-i \\theta /2}\\)</span> to <span>\\(e^{i \\theta /2}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00919-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random \(n \times n\) matrix. The eigenvalues \(p_{j}\) of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function \(|G(x,n)|:=\#\{j:p_j>Ce^{-x n}\}\), (\(C>0\) here is a fixed constant) and establish the asymptotic behavior of its average over the interval \(x \in (\lambda -\varepsilon , \lambda +\varepsilon )\) by relating the function |G(x, n)| to the solution J(q) of the following energy problem on the unit circle \(S^{1}\), which is of independent interest. Namely, for given \(\theta \), \(0<\theta < 2 \pi \), and given q, \(0<q<1\), we determine the function \(J(q) =\inf \{I(\mu ): \mu \in \mathcal {P}(S^{1}), \mu (A_{\theta }) = q\}\), where \(I(\mu ):= \int \!\int \log \frac{1}{|z - \zeta |} d\mu (z) d\mu (\zeta )\) is the logarithmic energy of a probability measure \(\mu \) supported on the unit circle and \(A_{\theta }\) is the arc from \(e^{-i \theta /2}\) to \(e^{i \theta /2}\).
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.