Dynamics in the Kepler problem on the Heisenberg group

IF 1.4 3区 数学 Q1 MATHEMATICS
Sergey Basalaev, Sergei Agapov
{"title":"Dynamics in the Kepler problem on the Heisenberg group","authors":"Sergey Basalaev,&nbsp;Sergei Agapov","doi":"10.1007/s13324-024-00921-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the nonholonomic motion of a point particle on the Heisenberg group around the fixed “sun” placed at the origin whose potential is given by the fundamental solution of the sub-Laplacian. In contrast with several recent papers that approach this problem as a variational one (hence a control problem) we study the equations of dynamical motion which are non-variational in nonholonomic mechanics. We find three independent first integrals of the system and show that its bounded trajectories are wound up around certain surfaces of the fourth order. We also describe some particular cases of trajectories.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00921-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the nonholonomic motion of a point particle on the Heisenberg group around the fixed “sun” placed at the origin whose potential is given by the fundamental solution of the sub-Laplacian. In contrast with several recent papers that approach this problem as a variational one (hence a control problem) we study the equations of dynamical motion which are non-variational in nonholonomic mechanics. We find three independent first integrals of the system and show that its bounded trajectories are wound up around certain surfaces of the fourth order. We also describe some particular cases of trajectories.

Abstract Image

Abstract Image

海森堡群上开普勒问题的动力学原理
我们研究的是海森堡群上的一个点粒子围绕固定在原点的 "太阳 "的非全局运动,而 "太阳 "的势能是由子拉普拉斯的基本解给出的。最近有几篇论文将这一问题视为变分问题(因此是控制问题),与此相反,我们研究的是非荷尔蒙力学中的非变分动力运动方程。我们找到了该系统的三个独立的第一次积分,并证明其有界轨迹是围绕某些四阶曲面展开的。我们还描述了轨迹的一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信