Stochastic Partial Differential Equations and Invariant Manifolds in Embedded Hilbert Spaces

IF 1 3区 数学 Q1 MATHEMATICS
Rajeev Bhaskaran, Stefan Tappe
{"title":"Stochastic Partial Differential Equations and Invariant Manifolds in Embedded Hilbert Spaces","authors":"Rajeev Bhaskaran, Stefan Tappe","doi":"10.1007/s11118-024-10134-8","DOIUrl":null,"url":null,"abstract":"<p>We provide necessary and sufficient conditions for stochastic invariance of finite dimensional submanifolds for solutions of stochastic partial differential equations (SPDEs) in continuously embedded Hilbert spaces with non-smooth coefficients. Furthermore, we establish a link between invariance of submanifolds for such SPDEs in Hermite Sobolev spaces and invariance of submanifolds for finite dimensional SDEs. This provides a new method for analyzing stochastic invariance of submanifolds for finite dimensional Itô diffusions, which we will use in order to derive new invariance results for finite dimensional SDEs.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"35 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10134-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide necessary and sufficient conditions for stochastic invariance of finite dimensional submanifolds for solutions of stochastic partial differential equations (SPDEs) in continuously embedded Hilbert spaces with non-smooth coefficients. Furthermore, we establish a link between invariance of submanifolds for such SPDEs in Hermite Sobolev spaces and invariance of submanifolds for finite dimensional SDEs. This provides a new method for analyzing stochastic invariance of submanifolds for finite dimensional Itô diffusions, which we will use in order to derive new invariance results for finite dimensional SDEs.

嵌入希尔伯特空间中的随机偏微分方程和不变曲率
我们为具有非光滑系数的连续嵌入希尔伯特空间中的随机偏微分方程(SPDE)解的有限维子实体的随机不变性提供了必要和充分条件。此外,我们还建立了赫米特索波列夫空间中此类 SPDE 的子实体不变性与有限维 SDE 的子实体不变性之间的联系。这为分析有限维 Itô 扩散的子曼形体的随机不变性提供了一种新方法,我们将利用这种方法推导出有限维 SDE 的新不变性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信