Effective alpha theory certification using interval arithmetic: alpha theory over regions

Kisun Lee
{"title":"Effective alpha theory certification using interval arithmetic: alpha theory over regions","authors":"Kisun Lee","doi":"arxiv-2405.04842","DOIUrl":null,"url":null,"abstract":"We reexamine Smale's alpha theory as a way to certify a numerical solution to\nan analytic system. For a given point and a system, Smale's alpha theory\ndetermines whether Newton's method applied to this point shows the quadratic\nconvergence to an exact solution. We introduce the alpha theory computation\nusing interval arithmetic to avoid costly exact arithmetic. As a\nstraightforward variation of the alpha theory, our work improves computational\nefficiency compared to software employing the traditional alpha theory.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We reexamine Smale's alpha theory as a way to certify a numerical solution to an analytic system. For a given point and a system, Smale's alpha theory determines whether Newton's method applied to this point shows the quadratic convergence to an exact solution. We introduce the alpha theory computation using interval arithmetic to avoid costly exact arithmetic. As a straightforward variation of the alpha theory, our work improves computational efficiency compared to software employing the traditional alpha theory.
使用区间算术的有效阿尔法理论认证:区域阿尔法理论
我们重新研究了斯马尔的α理论,它是证明解析系统数值解的一种方法。对于给定的点和系统,斯马尔的α理论可以确定牛顿方法应用于该点时是否显示出与精确解的二次收敛性。我们采用区间算术来计算阿尔法理论,以避免昂贵的精确算术。与采用传统阿尔法理论的软件相比,作为阿尔法理论的直接变体,我们的工作提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信