A score-based particle method for homogeneous Landau equation

Yan Huang, Li Wang
{"title":"A score-based particle method for homogeneous Landau equation","authors":"Yan Huang, Li Wang","doi":"arxiv-2405.05187","DOIUrl":null,"url":null,"abstract":"We propose a novel score-based particle method for solving the Landau\nequation in plasmas, that seamlessly integrates learning with\nstructure-preserving particle methods [arXiv:1910.03080]. Building upon the\nLagrangian viewpoint of the Landau equation, a central challenge stems from the\nnonlinear dependence of the velocity field on the density. Our primary\ninnovation lies in recognizing that this nonlinearity is in the form of the\nscore function, which can be approximated dynamically via techniques from\nscore-matching. The resulting method inherits the conservation properties of\nthe deterministic particle method while sidestepping the necessity for kernel\ndensity estimation in [arXiv:1910.03080]. This streamlines computation and\nenhances scalability with dimensionality. Furthermore, we provide a theoretical\nestimate by demonstrating that the KL divergence between our approximation and\nthe true solution can be effectively controlled by the score-matching loss.\nAdditionally, by adopting the flow map viewpoint, we derive an update formula\nfor exact density computation. Extensive examples have been provided to show\nthe efficiency of the method, including a physically relevant case of Coulomb\ninteraction.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel score-based particle method for solving the Landau equation in plasmas, that seamlessly integrates learning with structure-preserving particle methods [arXiv:1910.03080]. Building upon the Lagrangian viewpoint of the Landau equation, a central challenge stems from the nonlinear dependence of the velocity field on the density. Our primary innovation lies in recognizing that this nonlinearity is in the form of the score function, which can be approximated dynamically via techniques from score-matching. The resulting method inherits the conservation properties of the deterministic particle method while sidestepping the necessity for kernel density estimation in [arXiv:1910.03080]. This streamlines computation and enhances scalability with dimensionality. Furthermore, we provide a theoretical estimate by demonstrating that the KL divergence between our approximation and the true solution can be effectively controlled by the score-matching loss. Additionally, by adopting the flow map viewpoint, we derive an update formula for exact density computation. Extensive examples have been provided to show the efficiency of the method, including a physically relevant case of Coulomb interaction.
基于分数的同质朗道方程粒子法
我们提出了一种新颖的基于分数的粒子方法来求解等离子体中的朗道方程,该方法将学习与保结构粒子方法无缝集成[arXiv:1910.03080]。基于朗道方程的拉格朗日观点,一个核心挑战源于速度场对密度的非线性依赖。我们的主要创新在于认识到这种非线性以分数函数的形式存在,可以通过分数匹配技术对其进行动态逼近。由此产生的方法继承了确定性粒子法的守恒特性,同时避开了[arXiv:1910.03080]中内核密度估计的必要性。这不仅简化了计算,还提高了随维度变化的可扩展性。此外,我们还提供了一个理论估计值,证明我们的近似值与真实解之间的 KL 发散可以通过分数匹配损失得到有效控制。此外,通过采用流图观点,我们推导出了精确密度计算的更新公式。我们还提供了大量实例来展示该方法的效率,包括库仑相互作用的物理相关案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信