Exponential time propagators for elastodynamics

Paavai Pari, Bikash Kanungo, Vikram Gavini
{"title":"Exponential time propagators for elastodynamics","authors":"Paavai Pari, Bikash Kanungo, Vikram Gavini","doi":"arxiv-2405.05213","DOIUrl":null,"url":null,"abstract":"We propose a computationally efficient and systematically convergent approach\nfor elastodynamics simulations. We recast the second-order dynamical equation\nof elastodynamics into an equivalent first-order system of coupled equations,\nso as to express the solution in the form of a Magnus expansion. With any\nspatial discretization, it entails computing the exponential of a matrix acting\nupon a vector. We employ an adaptive Krylov subspace approach to inexpensively\nand and accurately evaluate the action of the exponential matrix on a vector.\nIn particular, we use an apriori error estimate to predict the optimal Kyrlov\nsubspace size required for each time-step size. We show that the Magnus\nexpansion truncated after its first term provides quadratic and superquadratic\nconvergence in the time-step for nonlinear and linear elastodynamics,\nrespectively. We demonstrate the accuracy and efficiency of the proposed method\nfor one linear (linear cantilever beam) and three nonlinear (nonlinear\ncantilever beam, soft tissue elastomer, and hyperelastic rubber) benchmark\nsystems. For a desired accuracy in energy, displacement, and velocity, our\nmethod allows for $10-100\\times$ larger time-steps than conventional\ntime-marching schemes such as Newmark-$\\beta$ method. Computationally, it\ntranslates to a $\\sim$$1000\\times$ and $\\sim$$10-100\\times$ speed-up over\nconventional time-marching schemes for linear and nonlinear elastodynamics,\nrespectively.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a computationally efficient and systematically convergent approach for elastodynamics simulations. We recast the second-order dynamical equation of elastodynamics into an equivalent first-order system of coupled equations, so as to express the solution in the form of a Magnus expansion. With any spatial discretization, it entails computing the exponential of a matrix acting upon a vector. We employ an adaptive Krylov subspace approach to inexpensively and and accurately evaluate the action of the exponential matrix on a vector. In particular, we use an apriori error estimate to predict the optimal Kyrlov subspace size required for each time-step size. We show that the Magnus expansion truncated after its first term provides quadratic and superquadratic convergence in the time-step for nonlinear and linear elastodynamics, respectively. We demonstrate the accuracy and efficiency of the proposed method for one linear (linear cantilever beam) and three nonlinear (nonlinear cantilever beam, soft tissue elastomer, and hyperelastic rubber) benchmark systems. For a desired accuracy in energy, displacement, and velocity, our method allows for $10-100\times$ larger time-steps than conventional time-marching schemes such as Newmark-$\beta$ method. Computationally, it translates to a $\sim$$1000\times$ and $\sim$$10-100\times$ speed-up over conventional time-marching schemes for linear and nonlinear elastodynamics, respectively.
弹性力学的指数时间传播者
我们提出了一种计算高效、系统收敛的弹性动力学模拟方法。我们将弹性动力学的二阶动力学方程重构为等效的一阶耦合方程系统,从而以马格努斯展开的形式表达解。在任何空间离散化的情况下,都需要计算矩阵作用于矢量的指数。我们采用自适应克雷洛夫子空间方法,以低成本准确评估指数矩阵对矢量的作用,特别是利用先验误差估计来预测每个时间步长所需的最佳克雷洛夫子空间大小。我们证明,在第一项之后截断的 Magnusexpansion 分别为非线性和线性弹性力学提供了二次和超二次的时间步收敛。我们展示了所提方法在一个线性(线性悬臂梁)和三个非线性(非线性悬臂梁、软组织弹性体和超弹性橡胶)基准系统中的精度和效率。对于所需的能量、位移和速度精度,我们的方法比传统的时间行进方案(如纽马克-$\beta$方法)允许更大的时间步长(10-100\times$)。在计算上,它比线性和非线性弹性动力学的传统时间行进方案分别提高了1000倍和10-100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信