Regularity of the Berezin Transform on the Elementary Reinhardt Domains

IF 0.7 4区 数学 Q2 MATHEMATICS
Linhe Yang, Qingyang Zou
{"title":"Regularity of the Berezin Transform on the Elementary Reinhardt Domains","authors":"Linhe Yang, Qingyang Zou","doi":"10.1007/s11785-024-01538-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of logarithmically convex domains in <span>\\({\\mathbb {C}}^n\\)</span>, called elementary Reinhardt domains, which can be regarded as a natural generalization of Hartogs triangles. The purpose of this paper is twofold. On one hand, we will compute the explicit forms of the Bergman kernel of weighted Hilbert space with radial symbols. On the other hand, by using the expressions of the weighted Bergman kernel, we will show the regularity of the Berezin transform on the elementary Reinhardt domains.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01538-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a class of logarithmically convex domains in \({\mathbb {C}}^n\), called elementary Reinhardt domains, which can be regarded as a natural generalization of Hartogs triangles. The purpose of this paper is twofold. On one hand, we will compute the explicit forms of the Bergman kernel of weighted Hilbert space with radial symbols. On the other hand, by using the expressions of the weighted Bergman kernel, we will show the regularity of the Berezin transform on the elementary Reinhardt domains.

基本莱因哈特域上的贝雷津变换正则性
在本文中,我们考虑了一类在 \({\mathbb {C}}^n\) 中的对数凸域,称为基本莱因哈特域,它可以被看作是哈特三角形的自然广义化。本文的目的有两个。一方面,我们将计算带径向符号的加权希尔伯特空间的伯格曼核的显式。另一方面,通过使用加权伯格曼核的表达式,我们将证明基本莱因哈特域上的贝雷津变换的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信