Analysis of the Dynamical Properties of Discrete Predator-Prey Systems with Fear Effects and Refuges

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wei Li, Chunrui Zhang, Mi Wang
{"title":"Analysis of the Dynamical Properties of Discrete Predator-Prey Systems with Fear Effects and Refuges","authors":"Wei Li, Chunrui Zhang, Mi Wang","doi":"10.1155/2024/9185585","DOIUrl":null,"url":null,"abstract":"This paper examines the dynamic behavior of a particular category of discrete predator-prey system that feature both fear effect and refuge, using both analytical and numerical methods. The critical coefficients and properties of bifurcating periodic solutions for Flip and Hopf bifurcations are computed using the center manifold theorem and bifurcation theory. Additionally, numerical simulations are employed to illustrate the bifurcation phenomenon and chaos characteristics. The results demonstrate that period-doubling and Hopf bifurcations are two typical routes to generate chaos, as evidenced by the calculation of the maximum Lyapunov exponents near the critical bifurcation points. Finally, a feedback control method is suggested, utilizing feedback of system states and perturbation of feedback parameters, to efficiently manage the bifurcations and chaotic attractors of the discrete predator-prey model.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9185585","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the dynamic behavior of a particular category of discrete predator-prey system that feature both fear effect and refuge, using both analytical and numerical methods. The critical coefficients and properties of bifurcating periodic solutions for Flip and Hopf bifurcations are computed using the center manifold theorem and bifurcation theory. Additionally, numerical simulations are employed to illustrate the bifurcation phenomenon and chaos characteristics. The results demonstrate that period-doubling and Hopf bifurcations are two typical routes to generate chaos, as evidenced by the calculation of the maximum Lyapunov exponents near the critical bifurcation points. Finally, a feedback control method is suggested, utilizing feedback of system states and perturbation of feedback parameters, to efficiently manage the bifurcations and chaotic attractors of the discrete predator-prey model.
具有恐惧效应和避难所的离散捕食者-猎物系统的动态特性分析
本文使用分析和数值方法研究了一类特殊的离散捕食者-猎物系统的动态行为,该系统同时具有恐惧效应和避难功能。利用中心流形定理和分岔理论计算了 Flip 和 Hopf 分岔的临界系数和分岔周期解的特性。此外,还采用数值模拟来说明分岔现象和混沌特征。结果表明,周期加倍和霍普夫分岔是产生混沌的两种典型途径,临界分岔点附近最大 Lyapunov 指数的计算也证明了这一点。最后,提出了一种利用系统状态反馈和反馈参数扰动的反馈控制方法,以有效管理离散捕食者-猎物模型的分岔和混沌吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Dynamics in Nature and Society
Discrete Dynamics in Nature and Society 综合性期刊-数学跨学科应用
CiteScore
3.00
自引率
0.00%
发文量
598
审稿时长
3 months
期刊介绍: The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信