Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion

Luis Ammann, Irwin Yousept
{"title":"Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion","authors":"Luis Ammann, Irwin Yousept","doi":"arxiv-2405.05158","DOIUrl":null,"url":null,"abstract":"In this paper, the SQP method applied to a hyperbolic PDE-constrained\noptimization problem is considered. The model arises from the acoustic full\nwaveform inversion in the time domain. The analysis is mainly challenging due\nto the involved hyperbolicity and second-order bilinear structure. This\nnotorious character leads to an undesired effect of loss of regularity in the\nSQP method, calling for a substantial extension of developed parabolic\ntechniques. We propose and analyze a novel strategy for the well-posedness and\nconvergence analysis based on the use of a smooth-in-time initial condition, a\ntailored self-mapping operator, and a two-step estimation process along with\nStampacchia's method for second-order wave equations. Our final theoretical\nresult is the R-superlinear convergence of the SQP method.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the SQP method applied to a hyperbolic PDE-constrained optimization problem is considered. The model arises from the acoustic full waveform inversion in the time domain. The analysis is mainly challenging due to the involved hyperbolicity and second-order bilinear structure. This notorious character leads to an undesired effect of loss of regularity in the SQP method, calling for a substantial extension of developed parabolic techniques. We propose and analyze a novel strategy for the well-posedness and convergence analysis based on the use of a smooth-in-time initial condition, a tailored self-mapping operator, and a two-step estimation process along with Stampacchia's method for second-order wave equations. Our final theoretical result is the R-superlinear convergence of the SQP method.
声学全波形反演中双曲 PDE 受限优化的 SQP 方法分析
本文考虑将 SQP 方法应用于双曲 PDE 受限优化问题。该模型源于时域声全波形反演。由于涉及双曲性和二阶双线性结构,分析具有很大的挑战性。这一显著特点导致了 SQP 方法失去规则性的不良后果,要求对已开发的抛物线技术进行大幅扩展。我们提出并分析了一种新的策略,即基于二阶波方程的平滑时间初始条件、定制自映射算子和两步估计过程,以及 Stampacchia 方法,进行良好假设性和收敛性分析。我们的最终理论结果是 SQP 方法的 R 超线性收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信