Jane Wang, Lucinda Leung, Nicholas Jackson, Michael McClean, Danielle Rose, Martin L. Lee, Susan E. Stockdale
{"title":"The association between population health management tools and clinician burnout in the United States VA primary care patient-centered medical home","authors":"Jane Wang, Lucinda Leung, Nicholas Jackson, Michael McClean, Danielle Rose, Martin L. Lee, Susan E. Stockdale","doi":"10.1186/s12875-024-02410-8","DOIUrl":null,"url":null,"abstract":"Technological burden and medical complexity are significant drivers of clinician burnout. Electronic health record(EHR)-based population health management tools can be used to identify high-risk patient populations and implement prophylactic health practices. Their impact on clinician burnout, however, is not well understood. Our objective was to assess the relationship between ratings of EHR-based population health management tools and clinician burnout. We conducted cross-sectional analyses of 2018 national Veterans Health Administration(VA) primary care personnel survey, administered as an online survey to all VA primary care personnel (n = 4257, response rate = 17.7%), using bivariate and multivariate logistic regressions. Our analytical sample included providers (medical doctors, nurse practitioners, physicians’ assistants) and nurses (registered nurses, licensed practical nurses). The outcomes included two items measuring high burnout. Primary predictors included importance ratings of 10 population health management tools (eg. VA risk prediction algorithm, recent hospitalizations and emergency department visits, etc.). High ratings of 9 tools were associated with lower odds of high burnout, independent of covariates including VA tenure, team role, gender, ethnicity, staffing, and training. For example, clinicians who rated the risk prediction algorithm as important were less likely to report high burnout levels than those who did not use or did not know about the tool (OR 0.73; CI 0.61-0.87), and they were less likely to report frequent burnout (once per week or more) (OR 0.71; CI 0.60-0.84). Burned-out clinicians may not consider the EHR-based tools important and may not be using them to perform care management. Tools that create additional technological burden may need adaptation to become more accessible, more intuitive, and less burdensome to use. Finding ways to improve the use of tools that streamline the work of population health management and/or result in less workload due to patients with poorly managed chronic conditions may alleviate burnout. More research is needed to understand the causal directional of the association between burnout and ratings of population health management tools.","PeriodicalId":9019,"journal":{"name":"BMC Family Practice","volume":"42 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Family Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12875-024-02410-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Technological burden and medical complexity are significant drivers of clinician burnout. Electronic health record(EHR)-based population health management tools can be used to identify high-risk patient populations and implement prophylactic health practices. Their impact on clinician burnout, however, is not well understood. Our objective was to assess the relationship between ratings of EHR-based population health management tools and clinician burnout. We conducted cross-sectional analyses of 2018 national Veterans Health Administration(VA) primary care personnel survey, administered as an online survey to all VA primary care personnel (n = 4257, response rate = 17.7%), using bivariate and multivariate logistic regressions. Our analytical sample included providers (medical doctors, nurse practitioners, physicians’ assistants) and nurses (registered nurses, licensed practical nurses). The outcomes included two items measuring high burnout. Primary predictors included importance ratings of 10 population health management tools (eg. VA risk prediction algorithm, recent hospitalizations and emergency department visits, etc.). High ratings of 9 tools were associated with lower odds of high burnout, independent of covariates including VA tenure, team role, gender, ethnicity, staffing, and training. For example, clinicians who rated the risk prediction algorithm as important were less likely to report high burnout levels than those who did not use or did not know about the tool (OR 0.73; CI 0.61-0.87), and they were less likely to report frequent burnout (once per week or more) (OR 0.71; CI 0.60-0.84). Burned-out clinicians may not consider the EHR-based tools important and may not be using them to perform care management. Tools that create additional technological burden may need adaptation to become more accessible, more intuitive, and less burdensome to use. Finding ways to improve the use of tools that streamline the work of population health management and/or result in less workload due to patients with poorly managed chronic conditions may alleviate burnout. More research is needed to understand the causal directional of the association between burnout and ratings of population health management tools.
期刊介绍:
BMC Family Practice is an open access, peer-reviewed journal that considers articles on all aspects of primary health care research. The journal has a special focus on clinical decision making and management, continuing professional education, service utilization, needs and demand, and the organization and delivery of primary care and care in the community.