Splitting of Separatrices for Rapid Degenerate Perturbations of the Classical Pendulum

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Inmaculada Baldomá, Tere M-Seara, Román Moreno
{"title":"Splitting of Separatrices for Rapid Degenerate Perturbations of the Classical Pendulum","authors":"Inmaculada Baldomá, Tere M-Seara, Román Moreno","doi":"10.1137/23m1550992","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1159-1198, June 2024. <br/> Abstract.In this work we study the splitting distance of a rapidly perturbed pendulum [math] with [math] a [math]-periodic function and [math]. Systems of this kind undergo exponentially small splitting, and, when [math], it is known that the Melnikov function actually gives an asymptotic expression for the splitting function provided [math]. Our study focuses on the case [math], and it is motivated by two main reasons. On the one hand, our study is motivated by the general understanding of the splitting, as current results fail for a perturbation as simple as [math]. On the other hand, a study of the splitting of invariant manifolds of tori of rational frequency [math] in Arnold’s original model for diffusion leads to the consideration of pendulum-like Hamiltonians with [math] where, for most [math], the perturbation satisfies [math]. As expected, the Melnikov function is not a correct approximation for the splitting in this case. To tackle the problem we use a splitting formula based on the solutions of the so-called inner equation and make use of the Hamilton–Jacobi formalism. The leading exponentially small term appears at order [math], where [math] is an integer determined exclusively by the harmonics of the perturbation. We also provide an algorithm to compute it.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1550992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1159-1198, June 2024.
Abstract.In this work we study the splitting distance of a rapidly perturbed pendulum [math] with [math] a [math]-periodic function and [math]. Systems of this kind undergo exponentially small splitting, and, when [math], it is known that the Melnikov function actually gives an asymptotic expression for the splitting function provided [math]. Our study focuses on the case [math], and it is motivated by two main reasons. On the one hand, our study is motivated by the general understanding of the splitting, as current results fail for a perturbation as simple as [math]. On the other hand, a study of the splitting of invariant manifolds of tori of rational frequency [math] in Arnold’s original model for diffusion leads to the consideration of pendulum-like Hamiltonians with [math] where, for most [math], the perturbation satisfies [math]. As expected, the Melnikov function is not a correct approximation for the splitting in this case. To tackle the problem we use a splitting formula based on the solutions of the so-called inner equation and make use of the Hamilton–Jacobi formalism. The leading exponentially small term appears at order [math], where [math] is an integer determined exclusively by the harmonics of the perturbation. We also provide an algorithm to compute it.
经典摆的快速退化扰动的分离矩分裂
SIAM 应用动力系统学报,第 23 卷,第 2 期,第 1159-1198 页,2024 年 6 月。 摘要.在这项工作中,我们研究了具有[math]个[math]周期函数和[math]的快速扰动摆[math]的分裂距离。当[math]时,已知梅尔尼科夫函数实际上给出了[math]所提供的分裂函数的渐近表达式。我们的研究侧重于[math]的情况,其动机主要有两个。一方面,我们的研究是出于对分裂的一般理解,因为目前的结果对于像[math]这样简单的扰动是失败的。另一方面,在阿诺德最初的扩散模型中,对有理频率[math]的环的不变流形分裂的研究导致了对具有[math]的钟摆式哈密顿的考虑,在大多数[math]情况下,扰动满足[math]。不出所料,在这种情况下,梅利尼科夫函数并不是一个正确的分裂近似值。为了解决这个问题,我们使用了基于所谓内方程解的分裂公式,并利用了汉密尔顿-雅可比形式主义。前导指数小项出现在[math]阶,其中[math]是一个整数,完全由扰动的谐波决定。我们还提供了计算它的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信